While skydiving, its not just freely falling under Earth's gravity. Additional force called drag acts against the gravity which slows down the rate of fall. Drag is caused by the air molecules which pushes against the body as it falls through them. This is actually a significant amount of force which slows down the rate of fall of the body. Drag depends on the contact surface area and weight. More the surface area in contact, more would be the drag. The sitting position of the skydiver would experience less drag than the chest down position because of the less contact surface area of the body with the air molecules while in the former case. No two persons have identical body shape and weight. Hence, the rate of fall can be made nearly equal but not exactly equal. This is would be possible when they are having same body position.
Answer:
3 times louder
Explanation:
The Loudness in decibel Db L = 10㏒(I/I₀) where I = sound intensity level and I₀ = threshold of hearing = 10⁻¹² W/m².
Now, for Jessica, I₁ = sound intensity level of Jessica's music = 10⁻⁹
and I₂ = sound intensity level of Braylee's music = 10⁻³
So, substituting the variables into the equation, we have
L₁ = 10㏒(I₁/I₀)
L₁ = 10㏒(10⁻⁹/10⁻¹²)
L₁ = 10㏒(10³)
L₁ = 3 × 10㏒10
L₁ = 30㏒10
L₁ = 30 dB
Now, for Braylee, I₂ = sound intensity level of Braylee's music = 10⁻³
So, substituting the variables into the equation, we have
L₂ = 10㏒(I₁/I₀)
L₂ = 10㏒(10⁻³/10⁻¹²)
L₂ = 10㏒(10⁹)
L₂ = 9 × 10㏒10
L₂ =90㏒10
L₂ = 90 dB
So, the number of times Braylee's music is louder than Jessica's music is L₂/L₁ = 90 dB/30 dB = 3
So, Braylee's music is 3 times louder than Jessica's music
Answer:
Force A=-−2,697.75 N
Force B=13, 488.75 N
Explanation:
Taking moments at point A, the sum of clockwise and anticlockwise moments equal to zero.
25 mg-20Fb=0
25*1100g=20Fb
Fb=25*1100g/20=1375g
Taking g as 9.81 then Fb=1375*9.81=13,488.75 N
The sum of upward and downward forces are same hence Fa=1100g-1375g=-275g
-275*9.81=−2,697.75. Therefore, force A pulls downwards
Note that the centre of gravity is taken to be half the whole length hence half of 50 is 25 m because center of gravity is always at the middle
Answer:
D. 12.4 m
Explanation:
Given that,
The initial velocity of the ball, u = 18 m/s
The angle at which the ball is projected, θ = 60°
The maximum height of the ball is given by the formula
h = u² sin²θ/2g m
Where,
g - acceleration due to gravity. (9.8 m/s)
Substituting the values in the above equation
h = 18² · sin²60 / 2 x 9.8
= 18² x 0.75 / 2 x 9.8
= 12.4 m
Hence, the maximum height of the ball attained, h = 12.4 m
We will put the number of trips in the first column, the miles driven in the second column and gallons of fuel used in the third column.
8 7,680 1,010
7 9,940 1,330
12 14,640 1,790
12 13,920 2,050