Answer: 2. Solution A attains a higher temperature.
Explanation: Specific heat simply means, that amount of heat which is when supplied to a unit mass of a substance will raise its temperature by 1°C.
In the given situation we have equal masses of two solutions A & B, out of which A has lower specific heat which means that a unit mass of solution A requires lesser energy to raise its temperature by 1°C than the solution B.
Since, the masses of both the solutions are same and equal heat is supplied to both, the proportional condition will follow.
<em>We have a formula for such condition,</em>
.....................................(1)
where:
= temperature difference
- c= specific heat of the body
<u>Proving mathematically:</u>
<em>According to the given conditions</em>
- we have equal masses of two solutions A & B, i.e.

- equal heat is supplied to both the solutions, i.e.

- specific heat of solution A,

- specific heat of solution B,

&
are the change in temperatures of the respective solutions.
Now, putting the above values


Which proves that solution A attains a higher temperature than solution B.
sorry Idk the answer ..???
Answer:
<em>J=36221 Kg.m/s</em>
Explanation:
<u>Impulse-Momentum Theorem</u>
These two magnitudes are related in the following way. Suppose an object is moving at a certain speed
and changes it to
. The impulse is numerically equivalent to the change of linear momentum. Let's recall the momentum is given by

The initial and final momentums are, respectively

The change of momentum is

It is numerically equal to the Impulse J


We are given

The impulse the car experiences during that time is

J=-36221 Kg.m/s
The magnitude of J is
J=36221 Kg.m/s
Taking ratio of W & w. ≈ 6 . w = 1/6 W. Therefore , Weight of an object on the moon is 1/6 of its weight on the earth.
Answer: having to push a rough and heavy box across the floor to move it
Explanation:
The Friction force is any force that is in opposite direction of the motion of an object or fluid due to the contact of this object or fluid with other bodies.
In this sense, there are different types of friction force thath are useful in different situations:
-The <u>Static friction force</u> prevents surfaces from slipping across each other. For example, the friction between your feet and the floor keeping you from slipping.
-The <u>kinetic friction force</u> as the force that helps the tires in a moving vehicle to slow down and stop when necessary.
However, if you want to push a heavy box across the floor to move it, the friction force will not be useful at all.