That would be
0 degrees Celsius aka the melting point of water.... If you look at the diagram I attached you notice that at 0 degrees Celsius it is flat, this is because much heat is needed at this point for water to rise to 1 degree... It is the same for the boiling point (100)<span />
Answer:
0.558 atm
Explanation:
We must first consider that both gases behaves like ideal gases, so we can use the following formula: PV=nRT
Then, we should consider that, whithin a mixture of gases, the total pressure is the sum of the partial pressure of each gas:
P₀ = P₁ + P₂ + ....
P₀= total pressure
P₁=P₂= is the partial pressure of each gass
If we can consider that each gas is an ideal gas, then:
P₀= (nRT/V)₁ + (nRT/V)₂ +..
Considering the molecular mass of O₂:
M O₂= 32 g/mol
And also:
R= ideal gas constant= 0.082 Lt*atm/K*mol
T= 65°C=338 K
4.98 g O₂ = 0.156 moles O₂
V= 7.75 Lt
Then:
P°O₂=partial pressure of oxygen gas= (0.156x0.082x338)/7.75
P°O₂= 0.558 atm
Answer:
the final velocity of the object is 53.04 m/s.
Explanation:
Given;
initial velocity of the projectile, u = 50 m/s
displacement of the object, d = 16 m
let the final velocity of the object = v
Apply the following kinematic equation to determine the final velocity of the projectile.
v² = u² + 2gd
v² = 50² + (2 x 9.8 x 16)
v² = 2813.6
v = √2813.6
v = 53.04 m/s
Therefore, the final velocity of the object is 53.04 m/s.
Answer:
$364.29
Explanation:
given,
Packing of crates per month (u)= 800
annual carrying cost of 35 percent of the purchase price per crate.
Ordering cost(S) = $ 28
D = 800 x 12 = 9600 crates/year
H = 0.35 P
H = 0.35 x $10
H = $3.50/crate per yr.
Present Total cost
= 
= 1400 + 336
= $ 1,736



Total cost at EOQ
= 
= 685.86 + 685.85
= $ 1,371.71
the firm save annually in ordering and carrying costs by using the EOQ
= $ 1,736 - $ 1,371.71
= $364.29