Answer:
2.83 g
Explanation:
At constant temperature and pressure, Using Avogadro's law
Given ,
V₁ = 2.12 L
V₂ = 3.12 L
n₁ = 0.120 moles
n₂ = ?
Using above equation as:



n₂ = 0.17660 moles
Molar mass of methane gas = 16.05 g/mol
So, Mass = Moles*Molar mass = 0.17660 * 16.05 g = 2.83 g
<u>2.83 g are in the piston.</u>
Correct answer: "A. Energy from an outside source is continuously being added."
An endothermic reaction is a reaction that is characterised by the system absorbing energy from its surroundings. That energy is usually in heat form. For example, when mixing water<span> with potassium chloride, this reaction will absorb heat and the container will feel cold - endothermic reaction.</span>
Because they do not have the same qualities therefore they are different
½H2(g) + ½I2(g) → HI(g) ΔH = +6.2 kcal/mol
or...
½H2(g) + ½I2(g) + 6,2kcal/mole → HI(g)
________
21.0 kcal/mole + C(s) + 2S(s) → CS2(l)
or...
C(s) + 2S(s) → CS2(l) ΔH = +2,1 kcal/mole
_________
ΔH > 0 ----------->>> ENDOTHERMIC REACTIONS
When an electron absorbs energy, it will move up from a lower energy level to a higher energy level, called the "excited state" of the negatively-charged subatomic particle.<span> However, the absorbed energy is released within a small interval of time and the electron moves down to its "ground state."</span>