Answer:
962291.57928 m²
Explanation:
= Pressure =
(full reflection)
I = Intensity = 
P = Power = 
c = Speed of light = 
M = Mass of Sun = 
m = Mass of ship = 1500 kg
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
Force of radiation is given by

This force will balance the gravitational force as stated in the question

The area of the must be 962291.57928 m²
Answer:
Part 1)
Boat A will win the race
Part 2)
Boat A will win the race by 48 km as the 2nd boat will reach the other end while boat A will just touches the finish line
Part 3)
average velocity must be zero
Explanation:
As we know that the distance moved by the boat is given as

now the time taken by the boat to move to and fro is given as



Time taken by Boat B to cover the distance


Part 1)
Boat A will win the race
Part 2)
Boat A will win the race by 48 km as the 2nd boat will reach the other end while boat A will just touches the finish line
Part 3)
Since the displacement of Boat A is zero
so average velocity must be zero
Explanation:
F = 20N m= m1 a=10m/s²
m=m2 a=5m/s²
F = ma
<u>for the first one</u><u>:</u><u> </u>
f=m1 × a
20 = m1 ×10
20=10m1
m1=20/10
m1=2
<u>for</u><u> </u><u>the</u><u> </u><u>second</u><u> </u><u>one</u><u> </u><u>:</u>
f=m2×a
20=m2×5
m2= 20/5
m2= 4
since F=ma
F=(m1+m2) ×a
F =(4+2)×a
F =6×a
F=20(from the question above )
20=6×a
a=20/6
a=3.33
To solve this problem we will begin by finding the necessary and effective distances that act as components of the centripetal and gravity Forces. Later using the same relationships we will find the speed of the body. The second part of the problem will use the equations previously found to find the tension.
PART A) We will begin by finding the two net distances.

And the distance 'd' is



Through the free-body diagram the tension components are given by


Here we can watch that,

Dividing both expression we have that,

Replacing the values,


PART B) Using the vertical component we can find the tension,



