Answer:
i. Cv =3R/2
ii. Cp = 5R/2
Explanation:
i. Cv = Molar heat capacity at constant volume
Since the internal energy of the ideal monoatomic gas is U = 3/2RT and Cv = dU/dT
Differentiating U with respect to T, we have
= d(3/2RT)/dT
= 3R/2
ii. Cp - Molar heat capacity at constant pressure
Cp = Cv + R
substituting Cv into the equation, we have
Cp = 3R/2 + R
taking L.C.M
Cp = (3R + 2R)/2
Cp = 5R/2
Answer:
Unit of precision for force is the Newton.
Explanation:
It is the official unit used to describe force in science and mostly abbreviated with the symbol N.
Answer:
a)
, b) 
Explanation:
a) The final velocity of the 13.5 g coin is found by the Principle of Momentum Conservation:

The final velocity is:

b) The change in the kinetic energy of the 13.5 g coin is:
![\Delta K = \frac{1}{2}\cdot (13.5\times 10^{-3}\,kg)\cdot \left[(11.9\times 10^{-2}\,\frac{m}{s} )^{2}-(0\,\frac{m}{s} )^{2}\right]](https://tex.z-dn.net/?f=%5CDelta%20K%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%2813.5%5Ctimes%2010%5E%7B-3%7D%5C%2Ckg%29%5Ccdot%20%5Cleft%5B%2811.9%5Ctimes%2010%5E%7B-2%7D%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D-%280%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D%5Cright%5D)

Answer:
a. 0.342 kg-m² b. 2.0728 kg-m²
Explanation:
a. Since the skater is assumed to be a cylinder, the moment of inertia of a cylinder is I = 1/2MR² where M = mass of cylinder and r = radius of cylinder. Now, here, M = 56.5 kg and r = 0.11 m
I = 1/2MR²
= 1/2 × 56.5 kg × (0.11 m)²
= 0.342 kgm²
So the moment of inertia of the skater is
b. Let the moment of inertia of each arm be I'. So the moment of inertia of each arm relative to the axis through the center of mass is (since they are long rods)
I' = 1/12ml² + mh² where m = mass of arm = 0.05M, l = length of arm = 0.875 m and h = distance of center of mass of the arm from the center of mass of the cylindrical body = R/2 + l/2 = (R + l)/2 = (0.11 m + 0.875 m)/2 = 0.985 m/2 = 0.4925 m
I' = 1/12 × 0.05 × 56.5 kg × (0.875 m)² + 0.05 × 56.5 kg × (0.4925 m)²
= 0.1802 kg-m² + 0.6852 kg-m²
= 0.8654 kg-m²
The total moment of inertia from both arms is thus I'' = 2I' = 1.7308 kg-m².
So, the moment of inertia of the skater with the arms extended is thus I₀ = I + I'' = 0.342 kg-m² + 1.7308 kg-m² = 2.0728 kg-m²
4) They have non-moving magnetic fields.