The work done in lifting the hamburger is equal to the increase in gravitational potential energy of the hamburger, given by

where
m=0.1 kg is the mass of the hamburger
is the gravitational acceleration
is the increase in height of the hamburger
Substituting numbers into the equation, we find

So, the correct answer is
(3) 0.3 J
The first thing you should know in this case is the following definition:
PV = nRT
Then, as the temperature is constant, then:
PV = k
Then, we have two states:
P1V1 = k
P2V2 = k
We can then equalize both equations:
P1V1 = P2V2
Substituting the values:
(1.25) * (101) = (2.25) * (P2)
Clearing P2:
P2 = ((1.25) * (101)) /(2.25)=56.11Kpa
answer:
the new pressure inside the jar is 56.11Kpa
Answer:
C) 26.6
Explanation:
I don't know how to calculate vector
It is in the noble gas group which has a full valence electron shell found in group 18