Answer:
a) 2.41 km
b) 38.8°
Questions c and d are illegible.
Explanation:
We can express the displacements as vectors with origin on the point he started (0, 0).
When he traveled south he moved to (-3, 0).
When he moved east he moved to (-3, x)
The magnitude of the total displacement is found with Pythagoras theorem:
d^2 = dx^2 + dy^2
Rearranging:
dy^2 = d^2 - dx^2


The angle of the displacement vector is:
cos(a) = dx/d
a = arccos(dx/d)
a = arccos(3/3.85) = 38.8°
The trip from Camp Wood to the Pacific
Ocean and back again took 1.5 years to complete.<span>
</span>
<span>The </span>Lewis<span> and Clark </span>Expedition<span> from May 1804 to September 1806, also known as
the Corps of Discovery </span>Expedition, was the first
American expedition<span> to
cross what is now the western portion of the United States.</span>
Sound waves actually travel much faster in water than air, but words and the direction of the noise are distorted.
For a stationary siren on a firehouse is blaring at 81Hz. Assume the speed of sound to be 343m/s, the frequency perceived is mathematically given as'
F=81.721Hz
<h3>What is the
frequency perceived by a
firefighter racing toward the station at 11km/h?</h3>
Generally, the equation for the doppler effect is mathematically given as

Therefore
F=81(343+3.05556)/343
F=81.721Hz
In conclusion, the frequency is
F=81.721Hz
Read more about frequency
brainly.com/question/24623209
Answer:
The value is 
Explanation:
From the question we are told that
The initial speed of the roller coaster is 
The length of the hill is 
The acceleration of the roller coaster is 
Generally the acceleration is mathematically represented as

Here
is the initial time which is equal to zero
is the final velocity which is mathematically represented as

So




Solving this using quadratic formula we obtain


Generally time cannot be negative so

Generally the final velocity is mathematically represented as

