Wood Rots is the correct answer, as the wood begins to die
Answer:
dhdhhdshdhdhsjsnsjdnnsjsjshsjsndnsnsnsnzsnsnsnsjzjsjsjsjj
Explanation:
jsjszhxhbssbzbbzbdfnndsndnndndnsndnfndndnsmsnsxnbdbsndndndnxbcbwnnbfndbdxbbdbvh go do some gehehhsdhehndnsbxhdbdj
Answer:
45.89m/s²
Explanation:
Given
Distance S = 305m
Time t = 3.64s
To get the acceleration during this run, we will apply the equation of motion:
S = ut+1/2at²
Substitute the given parameters into the formula and calculate the value of a
305 = 0+1/2 a(3.64)²
304 = 1/2(13.2496)a
304 = 6.6248a
a = 304/6.6248
a = 45.89m/s²
Hence the average acceleration during this run is 45.89m/s²
Recall the wave equation,

where c is the speed of the wave (m/s), f is the frequency of the wave (Hz) and λ is the wavelength of the wave (m).

so
The acceleration due to gravity is given as:
g = GM/r²
<h3>
Derivation of gravitational acceleration:</h3>
According to Newton's second law of motion,
F = ma
where,
F = force
m = mass
a = acceleration
According to Newton's law of gravity,
F<em>g </em>= GMm/(r + h)²
F<em>g = </em>gravitational force
From Newton's second law of motion,
F<em>g </em>= ma
a = F<em>g</em>/m
We can refer to "a" as "g"
a = g = GMm/(m)(r + h)²
g = GM/(r + h)²
When the object is on or close to the surface, the value of g is constant and height has no considerable impact. Hence, it can be written as,
g = GM/r²
Learn more about gravitational acceleration here:
brainly.com/question/2142879
#SPJ4