The answer is A). Moving from A to C the temperature and the kinetic energy increases.
Answer:
Explanation:
Part A) Using
light intensity I= P/A
A= Area= π (Radius)^2= π((0.67*10^-6m)/(2))^2= 1.12*10^-13 m^2
Radius= Diameter/2
P= power= 10*10^-3=0.01 W
light intensity I= 0.01/(1.12*10^-13)= 9*10^10 W/m^2
Part B) Using
I=c*ε*E^2/2
rearrange to solve for E=
((I*2)/(c*ε))
c is the speed of light which is 3*10^8 m/s^2
ε=permittivity of free space or dielectric constant= 8.85* 10^-12 F⋅m−1
I= the already solved light intensity= 8.85*10^10 W/m^2
amplitude of the electric field E=
(9*10^10 W/m^2)*(2) / (3*10^8 m/s^2)*(8.85* 10^-12 F⋅m−1)
---> E=
(1.8*10^11) / (2.66*10^-3) =
(6.8*10^13) = 8.25*10^6 V/m
Answer:
θ = 4.78º
with respect to the vertical or 4.78 to the east - north
Explanation:
This is a velocity compound exercise since it is a vector quantity.
The plane takes a direction, the air blows to the west and the result must be to the north, let's use the Pythagorean theorem to find the speed
v_fly² = v_nort² + v_air²
v_nort² = v_fly² + - v_air²
Let's use trigonometry to find the direction of the plane
sin θ = v_air / v_fly
θ = sin⁻¹ (v_air / v_fly)
let's calculate
θ = sin⁻¹ (10/120)
θ = 4.78º
with respect to the vertical or 4.78 to the north-east
Answer:
B. Outside the nucleus.
Explanation:
Electrons orbit the nucleus of the atom.