Answer:
T=151 K, U=-1.848*10^6J
Explanation:
The given process occurs when the pressure is constant. Given gas follows the Ideal Gas Law:
pV=nRT
For the given scenario, we operate with the amount of the gas- n- calculated in moles. To find n, we use molar mass: M=102 g/mol.
Using the given mass m, molar mass M, we can get the following equation:
pV=mRT/M
To calculate change in the internal energy, we need to know initial and final temperatures. We can calculate both temperatures as:
T=pVM/(Rm); so initial T=302.61K and final T=151.289K
Now we can calculate change of U:
U=3/2 mRT/M using T- difference in temperatures
U=-1.848*10^6 J
Note, that the energy was taken away from the system.
Answer:
1. Conduction
2. Convection
3. Radiation
Explanation:
The 3 modes of heat transfer i an air conditioning system:
1. Conduction:
The transfer of heat by conduction takes place in solid and is when the conduction takes place as a result of direct contact in between the interacting material which transfer the heat energy from particle to particle thus conducting the heat through out the system.
2. Convection:
The other mode for the transfer of heat which takes place especially in fluids - gases and liquids is through the technique of convection in which the transfer of heat takes place by the circular motion of the atoms and molecules of the fluid which carries the heat energy and results in the distribution of the heated fluid in the entire system thus transferring all the heat energy in the entire system.
3. Radiation:
The third mode of heat transfer in the air conditioning system is through radiation. This method transfers the heat by making use of the electro-magnetic radiation in the infra red spectrum where the waves of the spectrum transfers the heat energy with the help of a medium or without any medium at all.
Thus making the radiation method of heat transfer as the only method out of the three methods which does not require the material medium for the transfer of heat energy.
Answer:A
Explanation:
Those who want to save money and will use the product for only a few years
Answer:
4.5kg/min
Explanation:
Given parameters

if we take
The mass flow rate of the second stream = 
The mass flow rate of mixed exit stream = 
Now from mass conservation


The temperature of the mixed exit stream given as

Therefore the mass flow rate of second stream will be 4.5 kg/min.