Answer:
Less intervention of humans.
Explanation:
This fact illustrate that less intervention of human in the production is the main cause for increase in productivity because use of machinery completed the work in less time as compared to the use of human labour. In many industries, machines takes the place of humans which increases the production of products but at the same time, increase the unemployment rate in the society. Making the whole industry on automation can increase the productivity of products in less time.
convert 40db to standard gain
AL=10^40/20=100
calculate total voltage gain
=AL×RL/RL+Ri
=83.33
38.41 DB
calculate power
Pi=Vi^2/Ri Po=Vo^2/RL
power gain= Po/Pi
=13.90×10^6
Answer:
b. The pirating streams are eroding headwardly to intersect more of the other streams’ drainage basins, causing water to be diverted down their steeper gradients.
Explanation:
From the Kaaterskill NY 15 minute map (1906), this shows two classic examples of stream capture.
The Kaaterskill Creek flow down the east relatively steep slopes into the Hudson River Valley. While, the Gooseberry Creek is a low gradient stream flowing down the west direction which in turn drains the higher parts of the Catskills in this area.
However, there is Headward erosion of Kaaterskill Creek which resulted to the capture of part of the headwaters of Gooseberry Creek.
The evidence for this is the presence of "barbed" (enters at obtuse rather than acute angle) tributary which enters Kaaterskill Creek from South Lake which was once a part of the Gooseberry Creek drainage system.
It should be noted again, that there is drainage divide between the Gooseberry and Kaaterskill drainage systems (just to the left of the word Twilight) which is located in the center of the valley.
As it progresses, this divide will then move westward as Kaaterskill captures more and more of the Gooseberry system.
Given:
Assuming the transition to turbulence for flow over a flat plate happens at a Reynolds number of 5x105, determine the following for air at 300 K and engine oil at 380 K. Assume the free stream velocity is 3 m/s.
To Find:
a. The distance from the leading edge at which the transition will occur.
b. Expressions for the momentum and thermal boundary layer thicknesses as a function of x for a laminar boundary layer
c. Which fluid has a higher heat transfer
Calculation:
The transition from the lamina to turbulent begins when the critical Reynolds
number reaches 


