Answer:
See explanation
Explanation:
Polymerization is the process whereby two or more monomers link together to form a compound of high molecular mass called a polymer.
There are two kinds of polymers;
-Addition polymers
-Condensation polymers
Addition polymers are formed by the joining of two or more monomers to form a polymer without the elimination of a small molecule.
Condensation polymers are formed by the joining of two or more molecules to form polymers with the elimination of a small molecule.
The main difference between polyethene and polyester is that polyethene is an addition polymer while polyester is a condensation polymer.
In polyethene, ethene molecules are joined together having the repeating unit as [-CH2-CH2-]n.
In polyester, the polymer arises from the reaction of carboxylic acid and an alcohol and loss of water molecules.
Answer:
The number of neutrons is entirely dependent on the Mass number of the particular atom. The standard mass for potassium is 39.
Potassium is element number 19, so it has 19 protons and 19 electrons in the neutral atom. It has therefore 39-19 = 20 Neutrons.
Explanation:
Answer:
The correct answer would be - 2.4KJ or, 2400J
Explanation:
Given:
heat capacity of liquid water - 4.18 J/g·°C
heat of vaporization - 40.7 kJ/mol
Mass of water = 1g
Moles of water = mass/molar mass
= 1g/18.016g
= 0.055 moles
Then,
Total heat required = q1(to raise the temperature to 100) + q2(change from the liquid phase to gas/steam)
= m *s*dt + moles * heat of vaporization
= (1g * 4.18 j/gc * (100-67)) + 0.055* 40.7 KJ
= 137.94J + 2.26KJ
=0.138KJ + 2.26KJ
=2.4KJ or, 2400J
Thus, the correct answer would be - 2.4KJ or, 2400J
Answer:
The answers to the questions are as follows
- The temperature of the water bath goes up
- The piston moves out
- Heat flows out of the gaseous mixture
- 173.kJ flows out of the system
Explanation:
- From the question, it is noted that 173.kJ of heat flows out of the system into the insulated water bath therefore the temperature of the water bath goes up
as seen in the relation ΔH = m·c·ΔT
Where ΔH heat measured by temperature rise ΔT of a given mass of water m of specific heat capacity of 4.2 J/g°C
- The amount of heat measured from previous experiment is more than the heat from the present reaction therefore since in the present reaction is constant pressure and from the first law of thermodynamics Energy can neither be created nor destroyed, the balance heat will be transformed to work evidence in the piston moving out
ΣH = Q + W where
w = P × ΔV = P × (P₂ - P₂)
- Heat flows out of the gaseous mixture and is sensed from the rise in the temperature of the water bath
- 173.kJ flows out of the system