Answer: The final temperature of the gas is 7.58 °C.
Explanation: We are given initial and final pressure of the system and we need to find the final temperature of the system.
To calculate it, we use the equation given by Gay-Lussac.
His law states that pressure is directly related to the temperature of the gas.

Or,

where,
= initial pressure = 893 mmHg = 1.175atm (Conversion factor: 1atm = 760mmHg)
= initial temperature = 49.3°C = [49.3 + 273.15]K = 322.45K
= Final pressure = 778mmHg = 1.023atm
= Final temperature = ?°C
Putting values in above equation, we get:

Converting Final temperature from kelvin to degree Celsius.
![T_2=280.73K=[280.73-273.15]^oC=7.58^oC](https://tex.z-dn.net/?f=T_2%3D280.73K%3D%5B280.73-273.15%5D%5EoC%3D7.58%5EoC)
Hence, the final temperature of the gas is 7.58 °C.
Cl⁻ has a greater charge density than Na⁻.
The amount of electric charge that can build up across a unit length, unit area, or unit volume of a conductor is known as charge density. In other words, it shows the amount of charge that is held in a certain field. It determines how the charge is distributed and can be either positive or negative.
We encounter electric charge density when measuring electric fields from different continuous charge distributions including linear, surface, and volume. We must also take charge density into account when analyzing current electricity. We must first comprehend this concept of density in order to comprehend charge density. The definition of density for a thing is its mass per unit volume.
Size and charge density are inversely correlated, meaning that the smaller the size, the higher the charge density. This implies that Cl has a smaller volume and a higher charge density.
To know more about charge density refer to: brainly.com/question/12968377
#SPJ4
Answer:
Polly did an experiment with marbles in a glass bowl to show the movement of particles in solids, liquids, and gases. The experimental set-up is shown below: A glass bowl is shown with four marbles inside it. ... Add water to the bowl so that the marbles start sliding past one another
Explanation:
Answer:
We know based on the charges of each ion and the fact that they must always sum to 0
Explanation:
Na only has one outer electon to give so it is always +1
Mg has two outer electrons so it always gets +2
Halogens have one "missing" electron in their outer shell so they get a -1
For NaCl (+1) + (-1) = 0
For MgI2 (+2) + 2(-1) = 0
They have free electron(s) on their outermost energy levels making them good conductors.
They have metallic bonds in their chemical structure.
They readily lose the electrons on their outermost energy levels, to bond with non-metals in ionic bonds to form chemical compounds called "salts"