<h2>Answer:</h2>
A) 3 atoms - 1 atom of Carbon and 2 atoms of oxygen.
B) 2 atoms of Nitrogen.
C) 6 atoms - 2 Carbon atoms, 2 Hydrogen atoms, and 2 Oxygen atoms.
<h2>Explanations:</h2>
A molecule is a group of atoms bonded together, representing the smallest fundamental unit of a chemical compound. Molecules are made up of atoms.
According to the following information, we are to find the number of atoms in the given molecules.
A) For carbon dioxide CO₂, this molecule is made of 3 atoms - 1 atom of Carbon and 2 atoms of oxygen.
B) For the compound N₂, this molecule is made up of 2 atoms of Nitrogen.
C) For the compound CHCOOH, this molecule consists of 6 atoms - 2 Carbon atoms, 2 Hydrogen atoms, and 2 Oxygen atoms.
Answer:
5×10⁵ L of ammonia (NH3)
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
N2 + 3H2 —> 2NH3
From the balanced equation above, we can say that:
3 L of H2 reacted to produce 2 L of NH3.
Finally, we shall determine the volume of ammonia (NH3) produced by the reaction of 7.5×10⁵ L of H2. This can be obtained as illustrated below:
From the balanced equation above,
3 L of H2 reacted to produce 2 L of NH3.
Therefore, 7.5×10⁵ L of H2 will react to produce = (7.5×10⁵ × 2)/3 = 5×10⁵ L of NH3.
Thus, 5×10⁵ L of ammonia (NH3) is produced from the reaction.
Answer:
Approximately
.
Explanation:
Make use of the molar mass data (
) to calculate the number of moles of molecules in that
of
:
.
Make sure that the equation for this reaction is balanced.
Coefficient of
in this equation:
.
Coefficient of
in this equation:
.
In other words, for every two moles of
that this reaction consumes, two moles of
would be produced.
Equivalently, for every mole of
that this reaction consumes, one mole of
would be produced.
Hence the ratio:
.
Apply this ratio to find the number of moles of
that this reaction would have produced:
.
Mass of Cl₂ : 164.01 g
<h3>Further explanation</h3>
A mole is a number of particles(atoms, molecules, ions) in a substance
This refers to the atomic total of the 12 gr C-12 which is equal to 6.02.10²³, so 1 mole = 6.02.10²³ particles
Can be formulated :
N = n x No
N = number of particles
n = mol
No = 6.02.10²³ = Avogadro's number
mol Cl₂ :

mass Cl₂(MW=71 g/mol) :

Answer:
The correct answer is B.
The
is samller than
of the reaction . So,the reaction will shift towards the left i.e. towards the reactant side.
Explanation:
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
K is the constant of a certain reaction when it is in equilibrium, while Q is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
For the given chemical reaction:

The expression for
is written as:
![Q=\frac{[PCl_3][Cl_2]}{[[PCl_5]^1}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BPCl_3%5D%5BCl_2%5D%7D%7B%5B%5BPCl_5%5D%5E1%7D)


Given :
= 0.0454
Thus as
, the reaction will shift towards the left i.e. towards the reactant side.