<h2>
Answer: an underground lake</h2>
Explanation:
In general, sound (mechanical waves) travels faster in solids than in liquids, and faster in liquids than in gases. This is because <u>the speed of the mechanical waves is determined by a relationship between the elastic properties of the medium </u>in which they are propagated and the mass per unit volume of the medium (that is:<u>density</u>).
In other words: The speed of sound varies depending on the medium through which the sound waves travel.
So, if we are told the sound wave initially had a speed of 4,000 m/s and it suddenly decreases to 1,500 m/s, this means the sound waves passed from a solid medium to a liquid medium.
Hence, the correct option is: an underground lake.
I think the correct answer from the choices listed above is option D. The model of the universe that suggests that the sun is the center of the universe was first brought by Copernicus. His model is known as the "Sun centered model".
A) We want to find the work function of the potassium. Apply this equation:
E = 1243/λ - Φ
E = energy of photoelectron, λ = incoming light wavelength, Φ = potassium work function
Given values:
E = 2.93eV, λ = 240nm
Plug in and solve for Φ:
2.93 = 1243/240 - Φ
Φ = 2.25eV
B) We want to find the threshold wavelength, i.e. find the wavelength such that the energy E of the photoelectrons is 0eV. Plug in E = 0eV and Φ = 2.25eV and solve for the threshold wavelength λ:
E = 1243/λ - Φ
0 = 1243/λ - Φ
0 = 1243/λ - 2.25
λ = 552nm
C) We want to find the frequency associated with the threshold wavelength. Apply this equation:
c = fλ
c = speed of light in a vacuum, f = frequency, λ = wavelength
Given values:
c = 3×10⁸m/s, λ = 5.52×10⁻⁷m
Plug in and solve for f:
3×10⁸ = f(5.52×10⁻⁷)
f = 5.43×10¹⁴Hz
Answer:
v= 1495.04 m/s
Explanation:
The formula for velocity of sound is given by ;
v= fλ --------where
v= velocity of sound
f= frequency of turning fork
λ = wavelength
However,
Δ L = 1/2 λ ------where Δ L is spacing between resonances.
1.46 = 1/2 λ
1.46 * 2 = λ
2.92 m = λ
v= fλ
v= 512 * 2.92
v= 1495.04 m/s
Friction can be useful when you trying to stop a car, also it can be useful in energy losses, increase wear and tear and produces heat