Answer:
a) the inductance of the coil is 6 mH
b) the emf generated in the coil is 18 mV
Explanation:
Given the data in the question;
N = 570 turns
diameter of tube d = 8.10 cm = 0.081 m
length of the wire-wrapped portion l = 35.0 cm = 0.35 m
a) the inductance of the coil (in mH)
inductance of solenoid
L = N²μA / l
A = πd²/4
so
L = N²μ(πd²/4) / l
L = N²μ(πd²) / 4l
we know that μ = 4π × 10⁻⁷ TmA⁻¹
we substitute
L = [(570)² × 4π × 10⁻⁷× ( π × (0.081)² )] / 4(0.35)
L = 0.00841549 / 1.4
L = 6 × 10⁻³ H
L = 6 × 10⁻³ × 1000 mH
L = 6 mH
Therefore, the inductance of the coil is 6 mH
b)
Emf ( ∈ ) = L di/dt
given that; di/dt = 3.00 A/sec
{∴ di = 3 - 0 = 3 and dt = 1 sec}
Emf ( ∈ ) = L di/dt
we substitute
⇒ 6 × 10⁻³ ( 3/1 )
= 18 × 10⁻³ V
= 18 × 10⁻³ × 1000
= 18 mV
Therefore, the emf generated in the coil is 18 mV
Answer:2%
When the voltages between the three phases are not equal, the current increases dramatically in the motor winding's, and if allowed to continue, the motor will be damaged.
Explanation:
Answer:
The required diameter of the fuse wire should be 0.0383 cm to limit the current to 0.53 A with current density of 459 A/cm²
.
Explanation:
We are given current density of 459 A/cm² and we want to limit the current to 0.53 A in a fuse wire. We are asked to find the corresponding diameter of the fuse wire.
Recall that current density is given by
j = I/A
where I is the current flowing through the wire and A is the area of the wire
A = πr²
but r = d/2 so
A = π(d/2)²
A = πd²/4
so the equation of current density becomes
j = I/πd²/4
j = 4I/πd²
Re-arrange the equation for d
d² = 4I/jπ
d = √4I/jπ
d = √(4*0.53)/(459π)
d = 0.0383 cm
Therefore, the required diameter of the fuse wire should be 0.0383 cm to limit the current to 0.53 A with current density of 459 A/cm²
.
Answer:
Disaggregation
Explanation:
In a company it is a way to create operational plans that are focused, either by time or by section.