1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NeX [460]
2 years ago
8

For some alloy, the yield stress is 345-MPa (50,000-psi) and the elastic modulus (E) is 103-GPa (15x106 psi). What is the maximu

m load that may be applied to a specimen with a cross-sectional area of 130-mm2 (0.2-in2) without plastic deformation
Engineering
1 answer:
OverLord2011 [107]2 years ago
4 0

The maximum load that may be applied to a specimen with a cross-sectional area of 130 mm² is; 35535 N

<h3>How to find Elastic Modulus?</h3>

We are told that for an alloy, the yield stress is 345-MPa and the elastic modulus (E) is 103-GPa.

Now, we want to find the maximum load that may be applied to a specimen with a cross-sectional area of 130-mm² without plastic deformation. Thus;

We are given the parameters;

Yield Stress; σ = 345 Mpa = 345 * 10⁶ Pa

Elastic Modulus; E = 103 GPa = 103 * 10⁹ Pa

Cross sectional Area; A = 130 mm² = 103 * 10⁻⁶ m²

Formula for stress without Plastic deformation is;

σ = F_max/Area

where;

σ is stress

F_max is maximum force

Area is Area

Thus making maximum force the subject of the formula gives;

F_max = σ * A

Plugging in the relevant values for stress and area gives us;

F_max = 345 * 10⁶ * 103 * 10⁻⁶

F_max = 35535 N

The maximum load that may be applied to a specimen with a cross-sectional area of 130 mm² is gotten to be 35535 N

Read more about Elastic Modulus at; brainly.com/question/6864866

#SPJ1

You might be interested in
Air modeled as an ideal gas enters a combustion chamber at 20 lbf/in.2
motikmotik

Answer:

The answer is "112.97 \ \frac{ft}{s}"

Explanation:

Air flowing into thep_1 = 20 \ \frac{lbf}{in^2}

Flow rate of the mass m  = 230.556 \frac{lbm}{s}

inlet temperature T_1 = 700^{\circ} F

PipelineA= 5 \times 4 \ ft

Its air is modelled as an ideal gas Apply the ideum gas rule to the air to calcule the basic volume v:

\to \bar{R} = 1545 \ ft \frac{lbf}{lbmol ^{\circ} R}\\\\ \to M= 28.97 \frac{lb}{\bmol}\\\\ \to pv=RT \\\\\to v= \frac{\frac{\bar{R}}{M}T}{p}

      = \frac{\frac{1545}{28.97}(70^{\circ}F+459.67)}{20} \times \frac{1}{144}\\\\=9.8 \frac{ft3}{lb}

V= \frac{mv}{A}

   = \frac{230.556 \frac{lbm}{s} \times 9.8 \frac{ft^3}{lb}}{5 \times 4 \ ft^2}\\\\= 112.97 \frac{ft}{s}

8 0
3 years ago
A highway reconstruction project is being undertaken to reduce crash rates. The reconstruction involves a major realignment of t
CaHeK987 [17]

Answer:

The provided length of the vertical curve is satisfactory for the reconstruction design speed of 60 mi/h

Explanation:

The explanation is shown on the first uploaded image

8 0
3 years ago
A company purchases a certain kind of electronic device from a manufacturer. The manufacturer indicates that the defective rate
olga2289 [7]

Answer:

1) The probability of at least 1 defective is approximately 45.621%

2) The probability that there will be exactly 3 shipments each containing at least 1 defective device among the 20 devices that are tested from the shipment is approximately 16.0212%

Explanation:

The given parameters are;

The defective rate of the device = 3%

Therefore, the probability that a selected device will be defective, p = 3/100

The probability of at least one defective item in 20 items inspected is given by binomial theorem as follows;

The probability that a device is mot defective, q = 1 - p = 1 - 3/100 = 97/100 = 0.97

The probability of 0 defective in 20 = ₂₀C₀(0.03)⁰·(0.97)²⁰ ≈ 0.543794342927

The probability of at least 1 = 1 - The probability of 0 defective in 20

∴ The probability of at least 1 = 1 - 0.543794342927 = 0.45621

The probability of at least 1 defective ≈ 0.45621 = 45.621%

2) The probability of at least 1 defective in a shipment, p ≈ 0.45621

Therefore, the probability of not exactly 1 defective = q = 1 - p

∴ q ≈ 1 - 0.45621 = 0.54379

The probability of exactly 3 shipment with at least 1 defective, P(Exactly 3 with at least 1) is given as follows;

P(Exactly 3 with at least 1) = ₁₀C₃(0.45621)³(0.54379)⁷ ≈ 0.160212

Therefore, the probability that there will be exactly 3 shipments each containing at least 1 defective device among the 20 devices that are tested from the shipment is 16.0212%

4 0
3 years ago
How do I get my son to do his work?
valentinak56 [21]

Answer:

Explanation:

Reward him if he does his homework/work

If he doesnt do his homework, take things that he loves off of him. and tell him if he does his homework/work he will get them things back

8 0
3 years ago
An ideal Otto cycle has a compression ratio of 9.2 and uses air as the working fluid. At the beginning of the compression proces
Allushta [10]

Answer:

(a) The amount of heat transferred to the air, q_{out} is 215.5077 kJ/kg

(b) The net work output, W_{net}, is 308.07 kJ/kg

(c) The thermal efficiency is 58.8%

(d) The Mean Effective Pressure, MEP, is 393.209 kPa

Explanation:

(a) The assumptions made are;

c_p = 1.005 kJ/(kg·K), c_v = 0.718 kJ/(kg·K), R = 0.287 kJ/(kg·K),

Process 1 to 2 is isentropic compression, therefore;

T_{2}= T_{1}\left (\dfrac{v_{1}}{v_{2}}  \right )^{k-1} = 300.15\times 9.2^{0.4} = 729.21 \, K

From;

\dfrac{p_{1}\times v_{1}}{T_{1}} = \dfrac{p_{2}\times v_{2}}{T_{2} }

We have;

p_{2} = \dfrac{p_{1}\times v_{1}\times T_{2}}{T_{1} \times v_{2}} = \dfrac{98\times 9.2\times 729.21}{300.15 } = 2190.43 \, kPa

Process 2 to 3 is reversible constant volume heating, therefore;

\dfrac{p_3}{T_3} =\dfrac{p_2}{T_2}

p₃ = 2 × p₂ = 2 × 2190.43 = 4380.86 kPa

T_3 = \dfrac{p_3 \times T_2}{p_2} =\dfrac{4380.86  \times 729.21}{2190.43} = 1458.42 \, K

Process 3 to 4 is isentropic expansion, therefore;

T_{3}= T_{4}\left (\dfrac{v_{4}}{v_{3}}  \right )^{k-1}

1458.42= T_{4} \times \left (9.2 \right )^{0.4}

T_4 = \dfrac{1458.42}{(9.2)^{0.4}}  = 600.3 \, K

q_{out} = m \times c_v \times (T_4 - T_1) = 0.718  \times (600.3 - 300.15) = 215.5077 \, kJ/kg

The amount of heat transferred to the air, q_{out} = 215.5077 kJ/kg

(b) The net work output, W_{net}, is found as follows;

W_{net} = q_{in} - q_{out}

q_{in} = m \times c_v \times (T_3 - T_2) = 0.718  \times (1458.42 - 729.21) = 523.574 \, kJ/kg

\therefore W_{net} = 523.574 - 215.5077 = 308.07 \, kJ/kg

(c) The thermal efficiency is given by the relation;

\eta_{th} = \dfrac{W_{net}}{q_{in}} \times 100=  \dfrac{308.07}{523.574} \times 100= 58.8\%

(d) From the general gas equation, we have;

V_{1} = \dfrac{m\times R\times T_{1}}{p_{1}} = \dfrac{1\times 0.287\times 300.15}{98} =0.897\, m^{3}/kg

The Mean Effective Pressure, MEP, is given as follows;

MEP =\dfrac{W_{net}}{V_1 - V_2} = \dfrac{W_{net}}{V_1 \times (1- 1/r)}= \dfrac{308.07}{0.897\times (1- 1/9.2)} = 393.209 \, kPa

The Mean Effective Pressure, MEP = 393.209 kPa.

3 0
3 years ago
Other questions:
  • The type of current that flows from the electrode across the arc to the work is called what?
    5·1 answer
  • The 10 foot wide circle quarter gate AB is articulated at A. Determine the contact force between the gate and the smooth surface
    10·1 answer
  • (Practice work, not graded)
    11·1 answer
  • Nitrogen can be liquefied using a Joule-Thomson expansioni process. This is done by rapidlyl and adiabatically expandign cold ni
    15·1 answer
  • Two variables, num_boys and num_girls, hold the number of boys and girls that have registered for an elementary school. The vari
    8·1 answer
  • Your coworker was impressed with the efficiency you showed in the previous problem and would like to apply your methods to a pro
    5·1 answer
  • In remote areas, your gps devices may lose reception. It’s a good idea to have a
    7·2 answers
  • The technique of smoothing out joint compound on either side of a joint is known as which of the following
    14·1 answer
  • Steam enters an adiabatic condenser (heat exchanger) at a mass flow rate of 5.55 kg/s where it condensed to saturated liquid wat
    11·1 answer
  • Which of the following describes a tropical grassland environment?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!