As mass increases kinetic energy also increases; kinetic energy is directly proportional to mass so whatever is done to either affects the other one the same. i hope this helps :)
Average velocity =
(displacement) / (time for the displacement)
and
(direction of the displacement) .
Displacement =
(distance from the start-point to the end-point)
and
(direction from the start-point to the end-point) .
When Ben is 200 meters from the corner store,
he is (500 - 200) = 300 meters from his house.
His displacement is
300 meters in the direction
from his house to the neighbor .
His average velocity is
(300/910) = 0.33 meters per second, in the
direction from his house to the neighbor .
<span>Her center of mass will rise 3.7 meters.
First, let's calculate how long it takes to reach the peak. Just divide by the local gravitational acceleration, so
8.5 m / 9.8 m/s^2 = 0.867346939 s
And the distance a object under constant acceleration travels is
d = 0.5 A T^2
Substituting known values, gives
d = 0.5 9.8 m/s^2 (0.867346939 s)^2
d = 4.9 m/s^2 * 0.752290712 s^2
d = 3.68622449 m
Rounded to 2 significant figures gives 3.7 meters.
Note, that 3.7 meters is how much higher her center of mass will rise after leaving the trampoline. It does not specify how far above the trampoline the lowest part of her body will reach. For instance, she could be in an upright position upon leaving the trampoline with her feet about 1 meter below her center of mass. And during the accent, she could tuck, roll, or otherwise change her orientation so she's horizontal at her peak altitude and the lowest part of her body being a decimeter or so below her center of mass. So it would look like she jumped almost a meter higher than 3.7 meters.</span>
Answer:
C
Explanation:
If Ami is saying she likes it then it it personal. If you are speaking from statistics and studies it is impersonal and technically not from there perspective. All of these do this except C.