Answer: The temperature of 0.6 moles of fluorine that occupy 15 L at 2,300 mmHg is 920 K
Explanation:
According to ideal gas equation:

P = pressure of gas = 2300 mm Hg = 3.02 atm (760mmHg=1atm)
V = Volume of gas = 15 L
n = number of moles = 0.6
R = gas constant =
T =temperature = ?


Thus the temperature of 0.6 moles of fluorine that occupy 15 L at 2,300 mmHg is 920 K
Answer:
The element that has been oxidized is the N
Explanation:
Zn²⁺(aq) + NH₄⁺(aq) → Zn(s) + NO₃⁻(aq)
See all the oxidation states:
Zn²⁺ → acts with +2
In ammonia, H acts with +1 and N with -3
Zn(s), acts with 0. In all the elements in ground state, the oxidation state is 0.
Zn changed from 2+ to 0. The oxidation number, has decreased.
This element has been reduced.
NO₃⁻ (aq) it's a ion, from nitric acid.
N acts with +5
O acts with -2
The global charge is -1
The N, has increased the oxidation state, so this element is the one oxidized.
The water has surface tension
Ok percent error is abs(calculated-actual)/actual(100%)
So 1.5/96 *100%