Answer:
40N in either direction is the answer
Answer:
1. a) 72 N.
2. a) 2 m/s².
Explanation:
Given the following data;
1. Mass = 90kg
Acceleration = 0.8 m/s²
To find the force;
Force = mass * acceleration
Force = 90 * 0.8
Force = 72 Newton.
2. Mass = 50kg
Force = 100N
To find the magnitude of acceleration;
Acceleration = force/mass
Acceleration = 100/50
Acceleration = 2 m/s²
<span>When an individual looks through a filtered telescope in which he or she observes the sun, the portion where it appears blotchy is likely to be called the sunspots while the layer of the sun where it shows where it occurs is called the photosphere.</span>
Answer:
Approximately 1.62 × 10⁻⁴ V.
Explanation:
The average EMF in the coil is equal to
,
Why does this formula work?
By Faraday's Law of Induction, the EMF induced in a coil (one loop) is equal to the rate of change in the magnetic flux through the coil.
.
Finding the average EMF in the coil is similar to finding the average velocity.
.
However, by the Fundamental Theorem of Calculus, integration reverts the action of differentiation. That is:
.
Hence the equation
.
Note that information about the constant term in the original function will be lost. However, since this integral is a definite one, the constant term in won't matter.
Apply this formula to this question. Note that , the magnetic flux through the coil, can be calculated with the equation
.
For this question,
- is the strength of the magnetic field.
- is the area of the coil.
- is the number of loops in the coil.
- is the angle between the field lines and the coil.
- At , the field lines are parallel to the coil, .
- At , the field lines are perpendicular to the coil, .
Initial flux: .
Final flux: .
Average EMF, which is the same as the average rate of change in flux:
.
Huh huh what? ¿Can’t you translate?