Answer:
weight at height = 100 N .
Explanation:
The problem relates to variation of weight due to change in height .
Let g₀ and g₁ be acceleration due to gravity , m is mass of the object .
At the surface :
Applying Newton's law of gravitation
mg₀ = G Mm / R²
At height h from centre
mg₁ = G Mm /h²
Given mg₀ = 400 N
400 = G Mm / R²
400 = G Mm / (6400 x 10³ )²
G Mm = 400 x (6400 x 10³ )²
At height h from centre
mg₁ = 400 x (6400 x 10³ )²/ ( 2 x 6400 x 10³)²
= 400 / 4
= 100 N .
weight at height = 100 N
V(voltage) = I(current)R(resistance)
substitute in the values
V = 15 * 0.10
V = 1.5 volts
Answer:
(a) Bus will traveled further a distance of 40 m
(b) It will take 7.5 sec to stop the bus
Explanation:
We have given initial velocity of the bus u = 24 m/sec
And final velocity v = 16 m/sec
Distance traveled in this process s = 50 m
From third equation of motion we know that 


(a) Now as the bus finally stops so final velocity v = 0 m/sec
So 

s= 90 m
So further distance traveled by bus = 90-50 =40 m
(b) Now as the bus finally stops so final velocity v= 0 m/sec
Initial velocity u = 24 m/sec
Acceleration 
So time 
Answer:
Neither lma0 I'm from a town :P
Explanation:
Hbu?
Have a nice dayyy <3
Answer:
KE = 0.5 * m * v², where: m - mass, v - velocity.
Explanation:
In classical mechanics, kinetic energy (KE) is equal to half of an object's mass (1/2*m) multiplied by the velocity squared. For example, if a an object with a mass of 10 kg (m = 10 kg) is moving at a velocity of 5 meters per second (v = 5 m/s), the kinetic energy is equal to 125 Joules, or (1/2 * 10 kg) * 5 m/s 2.