Kepler's third law hypothesizes that for all the small bodies in orbit around the
same central body, the ratio of (orbital period squared) / (orbital radius cubed)
is the same number.
<u>Moon #1:</u> (1.262 days)² / (2.346 x 10^4 km)³
<u>Moon #2:</u> (orbital period)² / (9.378 x 10^3 km)³
If Kepler knew what he was talking about ... and Newton showed that he did ...
then these two fractions are equal, and may be written as a proportion.
Cross multiply the proportion:
(orbital period)² x (2.346 x 10^4)³ = (1.262 days)² x (9.378 x 10^3)³
Divide each side by (2.346 x 10^4)³:
(Orbital period)² = (1.262 days)² x (9.378 x 10^3 km)³ / (2.346 x 10^4 km)³
= 0.1017 day²
Orbital period = <u>0.319 Earth day</u> = about 7.6 hours.
I would say the answer is B
Hope it helps!
Answer:
16.1 N
Explanation:
From the question,
F = ma.............................. Equation 1
Where F = horizontal force, m = mass of the object, a = acceleration .
Given: m = 7.0 kg, a = 2.3 m/s²
Substitute this values into equation 1
F = (7.0×2.3)
F = 16.1 N.
Hence the magnitude of the horizontal force is 16.1 N
Nuclear fusion because atomic nuclei combine to form a heavier nucleus. Option A is correct.
<h3>What is nuclear fusion?</h3>
The process by which two or more tiny nuclei unite to generate a bigger nucleus is known as a nuclear fusion reaction.
The more energy it takes to liberate an electron from a smaller atom. This is referred to as binding energy.
As a result, when two little nuclei fuse together, there is more binding energy than when two big nuclei fuse together.
For example, the fusion of two hydrogen atoms produces more energy than the fusion of one helium atom, and surplus energy is expelled into space upon binding.
Nuclear fusion because atomic nuclei combine to form a heavier nucleus.
Hence, option A is correct.
To learn more about nuclear fusion refer to the link;
brainly.com/question/14019172
#SPJ1