a) Copper is at a higher temperature, so the flow of heat will take place from copper to iron. Heat is a form of energy, which always flows from higher temperature to lower temperature.
b) To determine the actual final temperature, the heat capacity of the calorimeter must be known. A calorimeter constant refers to a constant, which quantifies the heat capacity of a calorimeter. It may be determined by using a known amount of heat to the calorimeter and measuring the corresponding change in temperature of the calorimeter.
Answer:
The boiling point is 308.27 K (35.27°C)
Explanation:
The chemical reaction for the boiling of titanium tetrachloride is shown below:
Ti
⇒ Ti
ΔH°
(Ti
) = -804.2 kJ/mol
ΔH°
(Ti
) = -763.2 kJ/mol
Therefore,
ΔH°
= ΔH°
(Ti
) - ΔH°
(Ti
) = -763.2 - (-804.2) = 41 kJ/mol = 41000 J/mol
Similarly,
s°(Ti
) = 221.9 J/(mol*K)
s°(Ti
) = 354.9 J/(mol*K)
Therefore,
s° = s° (Ti
) - s°(Ti
) = 354.9 - 221.9 = 133 J/(mol*K)
Thus, T = ΔH°
/s° = [41000 J/mol]/[133 J/(mol*K)] = 308. 27 K or 35.27°C
Therefore, the boiling point of titanium tetrachloride is 308.27 K or 35.27°C.
The molality is calculated using the following rule:
molality = number of moles of solute / kg of solvent
From the periodic table:
molar mass of lithium = 6.941 gm
molar mass of chlorine = 35.453 gm
molar mass of LiCl = 6.941 + 35.453 = 42.394 gm
number of moles found in 42 gm = mass / molar mass = 42 / 42.394 = 0.99
molality = 0.99 / 3.6 = 0.275 m
Answer:
eukaryotic because it has a nucleus
Explanation: