Answer:
B
Explanation:
Balanced equations have the same number of elements on both sides. If the number of elements are equal to each other for every element in the equation on both sides, then the equation is balanced.
Important concept : The big number before an element or compound represents how many molecules of that compound or element there are in a reaction. To find the number of atoms of each element you multiply the coefficient by the subscript ( small number ) which represents the number of atoms of that element in each molecule. Ex. 3H2O. There is a coefficient of 3 meaning that there are 3 molecules of H2O. There is a subscript after H meaning there are 2 atoms of hydrogen in each molecule. To find the total number of atoms we multiply the subscript of hydrogen by the coefficient of the whole molecule. 3 * 2 = 6 , so there are a total of 6 atoms of hydrogen in 3H2O
A) Cu + 2AgNO3 ==> CuNO3 + 2Ag
1 Cu 1
2 Ag 2
2 N 1
3 O 3
The amount of nitrogen atoms is different on both sides of the equation therefore this is not a balanced equation
B) CCl4 + O2 ==> CO2 + 2Cl2
1 C 1
4 Cl 4
2 O 2
The number of atoms of each element is the same on both sides of the equation therefore this is the balanced equation, however lets check the other answer choices just in case.
C) 2K + H2SO4 ==> K2SO4 + 2H2
2 K 2
1 H 4
1 S 1
4 O 4
The number of Hydrogen atoms are different on each side of the equation therefore this is not a balanced equation.
D) 2Al2O3 ==> 2Al + 3O2
4 Al 2
6 O 6
There are a different amount of aluminum atoms on both sides of the equation therefore this is not a balanced equation.
I’m pretty positive the answer is True
Answer:
A metalloid is a type of chemical element which has a preponderance of properties in between, or that are a mixture of, those of metals and nonmetals. There is no standard definition of a metalloid and no complete agreement on which elements are metalloids. Despite the lack of specificity, the term remains in use in the literature of chemistry.
A series of six elements called the metalloids separate the metals from the nonmetals in the periodic table. The metalloids are boron, silicon, germanium, arsenic, antimony, and tellurium. These elements look metallic; however, they do not conduct electricity as well as metals so they are semiconductors. They are semiconductors because their electrons are more tightly bound to their nuclei than are those of metallic conductors. Their chemical behavior falls between that of metals and nonmetals. For example, the pure metalloids form covalent crystals like the nonmetals, but like the metals, they generally do not form monatomic anions. This intermediate behavior is in part due to their intermediate electronegativity values. In this section, we will briefly discuss the chemical behavior of metalloids and deal with two of these elements—boron and silicon—in more detail.
Explanation:
i hope this helps you :)
15. 1,1,1
16. 1,1,1
17. 1,1,1
18. 1,1,1
19. 1,1,1
20. 1,1,3
21. 2,2,3
22. 2,2,3
23. 1,1,1
24. 1,1,1
25. 2,4,3
26. 2,4,1
You should really learn to do these! They're actually very simple
Explanation:
think its specific heat of water = 4.18 J/g°Ci