Answer:
1. Chemical, Radiant, Heat
2. Mass, Speed, Heat
3. Mechanical, Heat, Chemical
4. Heat, Electrical, Radiant
Depending on whether or not you can only use the choices at the top.
Explanation:
1. Chemical, Radiant, Thermal
2.Mechanical, Elastic, Thermal
3. Chemical, Mechanical
4. Radiant, Electrical, Thermal
Mechanical energy because of the mixing and mashing of the teeth. https://www.solarschools.net/knowledge-bank/energy/types (check this website because I'm not sure if I'm right yet).
1 Some kind of light is emitted for each element when it is moved from higher energy level to lower energy level
2 Also some of energy is absorbed which is being used to move electrons from high energy level to lower energy level
Question 1 :
V1/T1 = V2/T2
3.0L/273K = V2/373K
To get the value of Z, cross multiply
3.0L x 373K = 273K x V2
1119 = 273V2
Divide both sides by 273
1119/273 = 273V2/273
4.10L = V2
The new volume is 4.10 liters
Question 2 :
P1/T1 = P2 /T2
P1 = 880 kPA= 880 *10^3 Pa
T1 = 250 K
T2 = 303 K
P2 =?
Substituting for P2
P2 = P1 T2/ T1
P2 = 880 kPa * 303 / 250
P2 = 266,640 kPa/ 250
P2 = 1066.56 kPa.
The new pressure of the gas is 1066.56 kPa
Question 3 :
Given that:
Volume of gas V = 4.80L
(since 1 liter = 1dm3
4.80L = 4.80dm3)
Temperature T = 62°C
Convert Celsius to Kelvin
(62°C + 273 = 335K)
Pressure P = 2.9 atm
Number of moles of gas N = ?
Apply ideal gas equation
pV = nRT
2.9atm x 4.8dm3 = n x (0.0082 atm dm3 K-1 mol-1 x 335K)
13.92 atm dm3 = nx 2.747 atm dm3 mol-1
n = 13.92/2.747
n = 5.08 moles
There are 5.08 moles of gas contained in the sample
Question 4 :
Volume of gas V = 3.47L
(since 1 liter = 1dm3
3.47L = 3.47dm3)
Temperature T = 85.0°C
Convert Celsius to Kelvin
(85.0°C + 273 = 358K)
Pressure P = ?
Number of moles of gas N = 0.100 mole
Apply ideal gas equation
pV = nRT
p x 3.47dm3 = 0.10 x (0.0082 atm dm3 K-1 mol-1 x 358K)
p x 3.47dm3 = 0.29 atm dm3
p = (0.29 atm dm3 / 3.47 dm3)
p = 0.085 atm
If 1 atm = 760 mm Hg
0.085atm = 0.085 x 760
= 64.6 mm Hg
The pressure of the gas is 64.6 mm hg
2SO2(g)+O2(g)→2 SO3(g), here reaction entropy decreases as the number of gas moles decreases from reactions to products.
HCL(g)+NH3(g)→NH4CL(s), entropy decreases as molecules of gas are converted into solid.
CO2(s)→CO2(g), entropy increases as gas is formed from a solid.
Cao(s)+CO2(g)→Caco3(s), entropy increases as gas is converted into a solid.
Answer: 62g
Explanation: You add 24g and 38 grams because when a substance reacts with another substance there is the same amount of grams in the product, so there would be 62 grams in the product because that is the amount of grams there is in the reactants.