If you want to tell a friend about a fish you caught or a tree you cut down,
you're going to tell him WHERE you were ... its position in space, 3 numbers,
'x', 'y', and 'z' ... and also WHEN you were ... its position in time, one more
number.
Dimensions are numbers used to describe the location of a point, and the
difference in location between two points. With four numbers, you can exactly
describe the location of anything, and its distance from any other thing, in
space and time.
Answer:
10.52 m
Explanation:
The power radiated by a body is given by
P = σεAT⁴ where ε = emissivity = 0.97, T = temperature = 30 C + 273 = 303 K, A = surface area of human body = 1.8 m², σ = 5.67 × 10⁻⁴ W/m²K⁴
P = σεAT⁴ = 5.67 × 10⁻⁸ W/m²K⁴ × 0.97 × 1.8 m² × (303)⁴ = 834.45 W
This is the power radiated by the human body.
The intensity I = P/A where A = 4πr² where r = distance from human body.
I = P/4πr²
r = (√P/πI)/2
If the python is able to detect an intensity of 0.60 W/m², with a power of 834.45 W emitted by the human body, the maximum distance r, is thus
r = (√P/πI)/2 = (√834.45/0.60π)/2 = 21.04/2 = 10.52 m
So, the maximum distance at which a python could detect your presence is 10.52 m.
You would have to place your sensor above earth's atmosphere because it blocks out nearly all x-rays. this is why we have the Chandra observatory
hope this helps
B that’s the answer your welcome
<span>Range = 88.5 Km/h - 94.5 Km/h</span><span>
</span>