An ion-dipole force is a type of intermolecular force in which forces of attraction or repulsion occur between neighboring ions, molecules or atoms.
Answer:- 2.39 mL are required.
Solution:- It's a dilution problem and to solve this type of problems we use the dilution equation:

Where,
and
are molarities of concentrated and diluted solutions and
and
are their respective volumes.
= 1.10M
= 5.00mM = 0.005M (since, mM stands for milli molar and M stands for molar. 1M = 1000mM)
= ?
= 525 mL
Let's plug in the given values in the formula:



So, 2.39 mL of 1.10M are needed to make 525 mL of 5.00mM solution.
Answer:
Complete ionic:
.
Net ionic:
.
Explanation:
Start by identifying species that exist as ions. In general, such species include:
- Soluble salts.
- Strong acids and strong bases.
All four species in this particular question are salts. However, only three of them are generally soluble in water:
,
, and
. These three salts will exist as ions:
- Each
formula unit will exist as one
ion and one
ion. - Each
formula unit will exist as one
ion and two
ions (note the subscript in the formula
.) - Each
formula unit will exist as one
and two
ions.
On the other hand,
is generally insoluble in water. This salt will not form ions.
Rewrite the original chemical equation to get the corresponding ionic equation. In this question, rewrite
,
, and
(three soluble salts) as the corresponding ions.
Pay attention to the coefficient of each species. For example, indeed each
formula unit will exist as only one
ion and one
ion. However, because the coefficient of
in the original equation is two,
alone should correspond to two
ions and two
ions.
Do not rewrite the salt
because it is insoluble.
.
Eliminate ions that are present on both sides of this ionic equation. In this question, such ions include one unit of
and two units of
. Doing so will give:
.
Simplify the coefficients:
.
Answer:
I think finding the source of the fire would be the most difficult aspect seeing as though the fire would have burned any evidence
Explanation: