1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kobotan [32]
2 years ago
11

Which items or activities should a pregnant woman avoid to maintain her health and the health of her fetus? Check all that apply

.
Physics
1 answer:
Fynjy0 [20]2 years ago
6 0

Answer:

Alcohol and drugs are a no no. you should put the answers in so people can answer correctly.

You might be interested in
The logarithm of x, written log(x), tells you the power to which you would raise 10 to get x. So, if y=log(x), then x=10^y. It i
fomenos

To solve this problem it is necessary to apply the rules and concepts related to logarithmic operations.

From the definition of logarithm we know that,

Log_{10}(10) = 1

In this way for the given example we have that a logarithm with base 10 expressed in the problem can be represented as,

log_{10}(1,000,000)

We can express this also as,

log_{10}(10^6)

By properties of the logarithms we know that the logarithm of a power of a number is equal to the product between the exponent of the power and the logarithm of the number.

So this can be expressed as

6*log_{10}(10)

Since the definition of the base logarithm 10 of 10 is equal to 1 then

6*1=6

The value of the given logarithm is equal to 6

8 0
3 years ago
MATHPHYS CAN U HELP ME PLEASE
ludmilkaskok [199]

Explanation:

(1) The heat added to warm the ice to 0°C is:

q = mCΔT = (0.041 kg) (2090 J/kg/°C) (0°C − (-11°C)) = 942.59 J

The heat added to melt the ice is:

q = mL = (0.041 kg) (3.33×10⁵ J/kg) = 13,653 J

The heat added to warm the water to 100°C is:

q = mCΔT = (0.041 kg) (4186 J/kg/°C) (100°C − 0°C) = 17,162.6 J

The heat added to evaporate the water is:

q = mL = (0.041 kg) (2.26×10⁶ J/kg) = 92,660 J

The heat added to warm the steam to 115°C is:

q = mCΔT = (0.041 kg) (2010 J/kg/°C) (115°C − 100°C) = 1236.15 J

The total heat needed is:

q = 942.59 J + 13,653 J + 17,162.6 J + 92,660 J + 1236.15 J

q = 125,654.34 J

(2) When the first two are mixed:

m C₁ (T₁ − T) + m C₂ (T₂ − T) = 0

C₁ (T₁ − T) + C₂ (T₂ − T) = 0

C₁ (6 − 11) + C₂ (25 − 11) = 0

-5 C₁ + 14 C₂ = 0

C₁ = 2.8 C₂

When the second and third are mixed:

m C₂ (T₂ − T) + m C₃ (T₃ − T) = 0

C₂ (T₂ − T) + C₃ (T₃ − T) = 0

C₂ (25 − 33) + C₃ (37 − 33) = 0

-8 C₂ + 4 C₃ = 0

C₂ = 0.5 C₃

Substituting:

C₁ = 2.8 (0.5 C₃)

C₁ = 1.4 C₃

When the first and third are mixed:

m C₁ (T₁ − T) + m C₃ (T₃ − T) = 0

C₁ (T₁ − T) + C₃ (T₃ − T) = 0

(1.4 C₃) (6 − T) + C₃ (37 − T) = 0

(1.4) (6 − T) + 37 − T = 0

8.4 − 1.4T + 37 − T = 0

2.4T = 45.4

T = 18.9°C

(3) Heat gained by the ice = heat lost by the tea

mL + mCΔT = -mCΔT

m (3.33×10⁵ J/kg) + m (2090 J/kg/°C) (30.8°C − 0°C) = -(0.176 kg) (4186 J/kg/°C) (30.8°C − 32.8°C)

m (397372 J/kg) = 1473.472 J

m = 0.004 kg

m = 4 g

4 grams of ice is melted and warmed to the final temperature, which leaves 128 grams unmelted.

(4) The heat added to warm the ice to 0°C is:

q = mCΔT = (0.028 kg) (2090 J/kg/°C) (0°C − (-67°C)) = 3920.84 J

The heat added to melt the ice is:

q = mL = (0.028 kg) (3.33×10⁵ J/kg) = 9324 J

The heat added to warm the melted ice to T is:

q = mCΔT = (0.028 kg) (4186 J/kg/°C) (T − 0°C) = (117.208 J/°C) T

The heat removed to cool the water to T is:

q = -mCΔT = -(0.505 kg) (4186 J/kg/°C) (T − 27°C)

q = (2113.93 J/°C) (27°C − T) = 57076.11 J − (2113.93 J/°C) T

The heat removed to cool the copper to T is:

q = -mCΔT = -(0.092 kg) (387 J/kg/°C) (T − 27°C)

q = (35.604 J/°C) (27°C − T) = 961.308 J − (35.604 J/°C) T

Therefore:

3920.84 J + 9324 J + (117.208 J/°C) T = 57076.11 J − (2113.93 J/°C) T + 961.308 J − (35.604 J/°C) T

13244.84 J + (117.208 J/°C) T = 58037.418 J − (2149.534 J/°C) T

(2266.742 J/°C) T = 44792.58 J

T = 19.8°C

(5) Kinetic energy of the hammer = heat absorbed by ice

KE = q

½ mv² = mL

½ (0.8 kg) (0.9 m/s)² = m (80 cal/g × 4.186 J/cal × 1000 g/kg)

m = 9.68×10⁻⁷ kg

m = 9.68×10⁻⁴ g

(6) Heat rate = thermal conductivity × area × temperature difference / thickness

q' = kAΔT / t

q' = (1.09 W/m/°C) (4.5 m × 9 m) (10°C − 4°C) / (0.09 m)

q' = 2943 W

After 10.7 hours, the amount of heat transferred is:

q = (2943 J/s) (10.7 h × 3600 s/h)

q = 1.13×10⁸ J

q = 113 MJ

6 0
3 years ago
Thermodynamic Processes: An ideal gas is compressed isothermally to one-third of its initial volume. The resulting pressure will
djyliett [7]

Answer:

The resulting pressure is 3 times the initial pressure.

Explanation:

The equation of state for ideal gases is described below:

P\cdot V = n \cdot R_{u}\cdot T (1)

Where:

P - Pressure.

V - Volume.

n - Molar quantity, in moles.

R_{u} - Ideal gas constant.

T - Temperature.

Given that ideal gas is compressed isothermally, this is, temperature remains constant, pressure is increased and volume is decreased, then we can simplify (1) into the following relationship:

P_{1}\cdot V_{1} = P_{2}\cdot V_{2} (2)

If we know that \frac{V_{2}}{V_{1}} = \frac{1}{3}, then the resulting pressure of the system is:

P_{2} = P_{1}\cdot \left(\frac{V_{1}}{V_{2}} \right)

P_{2} = 3\cdot P_{1}

The resulting pressure is 3 times the initial pressure.

4 0
2 years ago
A vector has a magnitude of 46.0 m and points in a direction 20.0° below the positive x-axis. A second vector, , has a magnitude
irina1246 [14]

Answer with Step-by -step explanation:

We are given that

b.\mid A\mid=46 m

\theta=20^{\circ} below the positive x-axis

Therefore, the angle made by vector A in counter clockwise direction when measure from positive x-axis=x=360-20=340^{\circ}

x-component of vector A=A_x=\mid A\mid cosx=46cos 340=46\times 0.94=43.24

y-Component of vector A=A_y=\mid A\mid sinx=46sin340=46(-0.34)=-15.64

Magnitude of vector B=86 m

The vector B makes angle with positive x- axis=x'=42^{\circ}

x-component of vector B=B_x=86cos42=63.64

y-Component of vector B=B_y=86sin42=57.62

Vector A=A_xi+A_yj=43.24i-15.64j

Vector B=B_xi+B_yj=63.64i+57.62j

Vector C=A+B

Substitute the values

C=43.24i-15.64j+63.64i+57.62j

C=106.88i+41.98j

c.Direction=\theta=tan^{-1}(\frac{y}{x})=tan^{-1}(\frac{41.98}{106.88})=21.5^{\circ}

The direction of the vector C=21.5 degree

6 0
3 years ago
The ratio of Na to O is 2:1. What is the chemical formula for this ionic compound? NaO NaO2 Na2O Na2O2
zlopas [31]

its C because i just anwserd it & it was right

3 0
3 years ago
Read 2 more answers
Other questions:
  • The Morpho rhetenor butterfly is shown above. The name Morpho refers to the butterfly's
    14·1 answer
  • Cousin Throckmorton is playing with the clothesline. One end of the clothesline is attached to a vertical post. Throcky holds th
    6·1 answer
  • You drop two rocks. one rock has a mass of 8kg and the other a mass of 7kg. The 8kg rock falls no faster than the 7kg rock for w
    8·1 answer
  • A 50kg boy runs at a speed of 10.0m/s and jumpsonto a cart
    15·2 answers
  • Describe transmission
    11·1 answer
  • Sam and George are riding in separate cars on the freeway. The lanes they are driving in are adjacent. We choose our coordinate
    15·1 answer
  • Calculate the speed of an object that travels 75m in 15s.
    15·2 answers
  • Look at the distance-time graph below. It shows Angela's journey as she walks to the end of the road and back. The gradient repr
    8·1 answer
  • Earth's magnetic compass and its effect on birds?
    14·1 answer
  • Suppose you needed to push a 1,500-N sofa up a frictionless ramp with a 30° angle. How much force would you have to apply to the
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!