Answer:
If a piece of iron is brought near a permanent magnet, the electrons within the atoms in the iron orient their spins to match the magnetic field force produced by the permanent magnet, and the iron becomes “magnetized.”
Explanation:
i dont know how to add align and domain
Answer:
1)
Force on bar magnet = 0
Torque on bar magnet = 0
2)
Force on bar magnet = 0
Torque on bar magnet = 0.177 Nm
3)
Force on bar magnet = 0
Torque on bar magnet = 0.25 Nm
Explanation:
Part 1)
net force on bar magnet in uniform magnetic field is always zero
Torque on bar magnet is given as

when bar magnet is inclined along z axis along magnetic field
then we will have

Part 2)
net force on bar magnet in uniform magnetic field is always zero
Torque on bar magnet is given as

when bar magnet is pointing 45 degree with z axis then we will have



Part 3)
net force on bar magnet in uniform magnetic field is always zero
Torque on bar magnet is given as

when bar magnet is pointing 90 degree with z axis then we will have



Answer: 17cm.
Explanation:
The equation you're using is:
Δd = df - di
Which means the change in position is equal to the final position minus the starting position. In this case that works out to 20cm - 3cm = 17cm. We're only interested in how much the snail moved, not how long it took to move, so even though they give a time it actually doesn't matter for this question.
<span>(a) E = ½ Q²/C, so ..
(b) E(max) = ½Li² (i=current), so .</span>
Answer:
9.6m/s
Explanation:
Using the equation S=d/t where s=speed, d=distance, and t=time
plug in the known variables
S=120m/12.5s
S=9.6m/s