Answer:
F = 2π I R B
Explanation:
The magnetic force is described by the equation.
F = q v x B = i L x B
Where i is the current, L is a vector that points in the direction of the current (length) and B is the magnetic field.
This equation can be used in scalar form and the direction of the force found by the right hand ruler, the thumb goes in the direction of L, the fingers extended in the direction of B and the palm of the hand indicates the direction of the force if the load is positive
F = i L B sin θ
In this case the wire is in the xy plane and the z-axis field whereby they are perpendicular, θ = 90º and sin 90 = 1
F = i L B
The loop length is
L = 2π R
F = i 2π R B
F = 2π I R B
The force is in the loop
Answer:
Option C
Explanation:
Given that
Motor force is 250 N
Force of friction is 750 N
Weight is 8500 N
And, the normal force is 8500 N
Now based on the above information
Here length of the rector shows the relative magnitude forward force i.e. 250 N i..e lower than the frictional force i.e. backward and weight i.e. 8500 would be equivalent to the normal force
Explanation:
It is given that,
= -40 mi/h,
= -40 mi/h
The negative sign indicates that x and y are decreasing.
We have to find
. Equation for the given variables according to the Pythagoras theorem is as follows.

Now, we will differentiate each side w.r.t 't' as follows.

or, 
So, when x = 4 mi, and y = 3 mi then z = 5 mi.
As, 
= 
= 
= 52
Thus, we can conclude that the cars are approaching at a rate of 52 mi/h.
Answer:
The answer to your question is a = 0.25 m/s²
Explanation:
Data
mass = m = 400 kg
Force = F = 100 N
acceleration = a = ? m/s²
Process
To solve this problem use Newton's second law that states that the force applied to an object is directly proportional to the mass of the body times its acceleration.
Formula
F = ma
solve for a
a = 
Substitution

Simplification and result
a = 0.25 m/s²