Answer:
If the rifle is held loosely away from the shoulder, the recoil velocity will be of -8.5 m/s, and the kinetic energy the rifle gains will be 81.28 J.
Explanation:
By momentum conservation, <em>and given the bullit and the recoil are in a straight line</em>, the momentum analysis will be <em>unidimentional</em>. As the initial momentum is equal to zero (the masses are at rest), we have that the final momentum equals zero, so

now we clear
and use the given data to get that

<em>But we have to keep in mind that the bullit accelerate from rest to a speed of 425 m/s</em>, then <u>if the rifle were against the shoulder, the recoil velocity would be a fraction of the result obtained</u>, but, as the gun is a few centimeters away from the shoulder, it is assumed that the bullit get to its final velocity, so the kick of the gun, gets to its final velocity
too.
Finally, using
we calculate the kinetic energy as

It will take 13
seconds for the golf ball to hit the ground. The correct answer between
all the choices given is the last choice or letter D. I am hoping that this
answer has satisfied your query and it will be able to help you in your
endeavor, and if you would like, feel free to ask another question.
Answer:
Energy in carriage (Potential energy) = 4,116 J
Explanation:
Given:
Mass of baby = 20 kg
Height = 21 m
Find:
Energy in carriage (Potential energy)
Computation:
The energy accumulated in an object as a result of its location relative to a neutral level is known as potential energy.
In carriage accumulated energy is potential energy.
Energy in carriage (Potential energy) = mgh
Energy in carriage (Potential energy) = (20)(9.8)(21)
Energy in carriage (Potential energy) = 4,116 J
Explanation:


<h3>BEFORE COLLISION)
<em> </em><em><u>INITI</u></em><em><u>AL</u></em><em><u> </u></em><em><u>MOM</u></em><em><u>. </u></em><em><u>OF</u></em><em><u> </u></em><em><u>BODY</u></em><em><u> </u></em><em><u>A</u></em><em><u> </u></em><em><u> </u></em></h3>
<em><u>PiA</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>m1u1</u></em>
<em><u>After</u></em><em><u> </u></em><em><u>collis</u></em><em><u>ion</u></em><em><u>)</u></em><em><u> </u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>. </u></em><em><u>B</u></em><em><u> </u></em><em><u> </u></em><em><u>I. </u></em><em><u>e</u></em><em><u> </u></em><em><u>piB</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>m2u2</u></em>
<h2>
<em><u>FINÅL</u></em><em><u> </u></em><em><u>MOMEN</u></em><em><u>TUM</u></em><em><u> </u></em><em><u>OF</u></em><em><u> </u></em><em><u>BØDY</u></em><em><u> </u></em><em><u>A</u></em><em><u> </u></em><em><u>I. </u></em><em><u>e</u></em><em><u> </u></em><em><u>PfA</u></em><em><u>=</u></em><em><u> </u></em><em><u>m1v1</u></em></h2>
<em><u>FINAL</u></em><em><u> </u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>. </u></em><em><u>B</u></em><em><u> </u></em><em><u>I. </u></em><em><u>e</u></em><em><u> </u></em><em><u>PfB</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>m2v2</u></em>
<em><u>ùr</u></em><em><u> ãñswer</u></em><em><u> </u></em><em><u>✌️</u></em>
♠️♠️♠️♠️♠️♠️