For example, consider the energy used by an electric fan. The amount of electrical energy used is greater than the kinetic energy of the moving fan blades. Because energy is always conserved, some of the electrical energy flowing into the fan's motor is obviously changed into unusable or unwanted forms.
Answer:
2.52 g NaCl
Explanation:
(Step 1)
To find the mass, you first need to find the moles NaCl. This value can be found using the molarity ratio:
Molarity = moles / volume (L)
After you convert mL to L, you can plug the given values into the equation and simplify to find moles.
136.9 mL / 1,000 = 0.1369 L
Molarity = moles / volume
0.315 M = moles / 0.1369 L
0.0431 = moles
(Step 2)
Now, you can use the molar mass to convert moles to grams.
Molar Mass (NaCl): 22.990 g/mol + 35.453 g/mol
Molar Mass (NaCl): 58.443 g/mol
0.0431 moles NaCl 58.443 g
------------------------------ x ------------------- = 2.52 g NaCl
1 mole
Answer:
involuntary, attached to the eyeball, nonstriated.
Explanation:
Answer:Ian is looking at cells using a microscope. He sees a nucleus and a large vacuole in the central area of a cell. What type of cell is he most likely looking at?
Explanation:
Ian is looking at cells using a microscope. He sees a nucleus and a large vacuole in the central area of a cell. What type of cell is he most likely looking at?
Answer:
1.1 M
General Formulas and Concepts:
- Molarity = moles of solute / liters of solution
Explanation:
<u>Step 1: Define variables</u>
1.2 mol KCL
1.1 L of solution
M = unknown
<u>Step 2: Solve for Molarity</u>
- Substitute: M = 1.2 mol/1.1 L
- Evaluate: M = 1.09091
<u>Step 3: Check</u>
<em>We are given 2 sig figs. Follow sig fig rules.</em>
1.09091 M ≈ 1.1 M