Answer:
4.7 m³
Explanation:
We'll use the gas law P1 • V1 / T1 = P2 • V2 / T2
* Givens :
P1 = 101 kPa , V1 = 2 m³ , T1 = 300.15 K , P2 = 40 kPa , T2 = 283.15 K
( We must always convert the temperature unit to Kelvin "K")
* What we want to find :
V2 = ?
* Solution :
101 × 2 / 300.15 = 40 × V2 / 283.15
V2 × 40 / 283.15 ≈ 0.67
V2 = 0.67 × 283.15 / 40
V2 ≈ 4.7 m³
Answer:
wavelenght
Explanation:
The wavelength is the spatial period of a wave, analogous to the temporal period, it is the distance between two consecutive points with maximum amplitude that are repeated in space . In the waves of the sea, the wavelength is easily observed in the separation between two consecutive ridges.
when we find the distance we will add all the blocks so
distance = 6+6+4
distance = 14blocks
when we find the displacement we will add and minus too
As you can read he goes to the south 6 and to north 6 so he leave that place and back to the place again so the displacement is 0. and again he goes to the west 4 blocks so the displacement = <em><u>4blocks</u></em><em><u> </u></em><em><u>to</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>west</u></em>
Answer:

It will float.
Explanation:
Hello.
In this case, given the width, length and height, we can compute the volume as follows:

Moreover, since the density is computed via the division of the mass by the volume:

We obtain:

In such a way, since the solid has a lower density than the water, we infer it will float.
Best regards.
The most common liquid on planet earth is water