48.3 g AgNO3 / 169.9 g/mol = 0.284 moles AgNO3
0.284 mol AgNO3 X (1 mol Ag2CrO4/2 mol AgNO3) = 0.142 mol Ag2CrO4
0.142 mol Ag2CrO4 X 331.7 g/mol = 47.1 g Ag2CrO4
It depends on the process.
Like for example if the process is isothermal(temperature is constant), you can use,
PV = constant or P1V1 = P2V2 where P1V1 are initial conditions and P2V2 are final.
For adiabatic process,
PV^gamma = constant or P1V1 ^gamma = P2V2 ^gamma.
where gamma = Cp
------
Cv
Cp = specific heat at constant pressure and Cv = specific at constant volume.
Value of Gamma will be given in question.
Hope this helps!
So what am I suppose to answer here?
Answer : The final temperature of the copper is, 
Solution :
Formula used :

where,
Q = heat gained = 299 cal
m = mass of copper = 52 g
c = specific heat of copper =
= final temperature = ?
= initial temperature = 
Now put all the given values in the above formula, we get the final temperature of copper.


Therefore, the final temperature of the copper is, 
Answer:
Higher numbers indicate bases- not acidic/less acidic
Explanation: