Answer:
4Hg+2O2=4HgO
four Mercury + four oxygen
Answer:
The answer is B. Van der Waals forces are weaker than ionic and covalent bonds.
Explanation:
In general, if we arrange these molecular forces from the strongest to weakest, it would be like this:
Covalent bonds > Ionic bonds > Hydrogen bonds > Dipole-Dipole Interactions > Van der Waals forces
Covalent bonds are known to have the strongest and most stable bonds since they go deep and into the inter-molecular state. A diamond is an example of a compound with this characteristic bond.
Ionic bonds are the next strongest molecular bond following covalent bonds. This is due to the protons and electrons causing an electro-static force which results to the strong bonds. An example would be Sodium Chloride (NaCl), which when separated is Na⁺ and Cl⁻.
Van der Waals forces, also known as Dispersion forces, are the weakest type of molecular bonds. They are only formed through residual molecular attractions when molecules pass by each other. It doesn't even last long due to the uneven electron dispersion. It can be made stronger by adding more electrons in the molecule. This kind of molecular bonds appear in non-polar molecules such as carbon dioxide.
HOPE THIS HELPS!!!!!!!!!!!!!!
///////////////////////////////////////////////////////////////////////////////////////////
The most likely bond between element X and Iodine would be an ionic, or electrovalent, bond. Iodine has seven electrons in its outer shell, also known as the valence shell. To become perfectly stable, it needs only a single electron from another element. Hence no sharing of electron takes place (usually), which is the condition required for it to be covalent bonding. Hence it's most likely an ionic bonding/
substitute: <span><span>t<span>1/2</span></span>=<span><span>ln(2)</span>k</span>→k=<span><span>ln(2)</span><span>t<span>1/2</span></span></span></span>
Into the appropriate equation: <span>[A<span>]t</span>=[A<span>]0</span>∗<span>e<span>−kt</span></span></span>
<span>[A<span>]t</span>=[A<span>]0</span>∗<span>e<span>−<span><span>ln(2)</span><span>t<span>1/2</span></span></span>t</span></span></span>
<span>[A<span>]t</span>=(250.0 g)∗<span>e<span>−<span><span>ln(2)</span><span>3.823 days</span></span>(7.22 days)</span></span>=67.52 g</span>
There are 1.2 hr would this current have to be applied to plate out 7. 20 g of iron .
Calculation ,
Given ; Current ( I ) = 5. 68 A
In
, the valancy of Fe is +2 .
2 moles of
are required for the decomposition of 1 mole of Fe .
7. 20 g of Fe in moles = 7. 20 g /55.845 g/mol =0.12 mole
x moles of
are required for the decomposition of 0.128 mole of Fe .
moles of
are required = 0.256 moles
Charge on 1 mole of
= 96500 C
Charge on 0.256 mole of
= 24704 C
Current ( I )= Q/t
t =Q / I = 24704 C/5. 68 A = 4349 sec = 1.2 hr
Therefore , there are 1.2 hr would this current have to be applied to plate out 7. 20 g of iron .
To learn more about iron
brainly.com/question/18500540
#SPJ4