<span> Radio waves, microwaves, infra red, visible light, ultra violet, x-rays, gamma rays. </span>
<span />
Explanation:
It is given that,
Speed of the ball, v = 10 m/s
Initial position of ball above ground, h = 20 m
(a) Let H is the maximum height reached by the ball. It can be calculated using the conservation of energy as :


h' = 5.1 m
The maximum height above ground,
H = 5.1 + 20
H = 25.1 meters
So, the maximum height reached by the ball is 25.1 meters.
(b) The ball's speed as it passes the window on its way down is same as the initial speed i.e. 10 m/s.
Hence, this is the required solution.
An experiment that involves using a Landsat satellite is given below;
Paddy lands detection through the use of Landsat-8 satellite images and object-based classification in cape town, South Africa.
<h3>What is the experiment about?</h3>
Rice is known to be one of the most vital food staples in a lot of countries, especially South Africa . Due to the irrigated rice production that tend to differs from other kinds of agricultural fields, this study was said to have created a paddy field mapping model via the use of phenological aspects, a lot of satellite sensor data, and also the use of object-based approach.
This study uses the phonological features of rice plants and also the use of an annual data regarding surface temperature (LST) to make the paddy map.
The core remote sensing data is made up of the yearly LST that is obtained from MODIS and multi-temporal Landsat-8 satellite imagery.
Based on the study, the total accuracy and kappa coefficient for the pixel-based classification method is seen to be 92% and 0.89.
Hence, An experiment that involves using a Landsat satellite is Paddy lands detection through the use of Landsat-8 satellite images and object-based classification in cape town, South Africa.
Learn more about Landsat satellite from
brainly.com/question/25656875
#SPJ1
Answer:
Newton's Second Law tells us that the more mass an object has, the more force is needed to move it. A larger rocket will need stronger forces (eg. more fuel) to make it accelerate. The space shuttles required seven pounds of fuel for every pound of payload they carry.
Explanation:
Answer:
the speed after 3 seconds is 10 m/s
Explanation:
The computation of the speed is shown below:
As we know that
V = U + at
Here,
U = 34 m/s
a = - 8 m/s²
t = 3 Sec
V = velocity after 3 sec
V = 34 + (-8)3
= 34 - 24
V = 10 m/s
Hence, the speed after 3 seconds is 10 m/s