1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
igomit [66]
3 years ago
10

Alden, a passenger on a yacht moored 15 miles due north of a straight, east-west

Physics
1 answer:
Ghella [55]3 years ago
6 0

Answer:

To minimize the travel time from the yacht to the hospital, the motorboat should head in a direction of 12.83 degrees west of south.

Explanation:

If we assume that both the motorboat and ambulance will be moving at a constant speed, we can calculate the time that each one will take to travel a given distance using the following equation:

time=\frac{distance}{speed}

Then the total travel time from the yacht to the hospital will be the motorboat travel time plus the ambulance travel time

t=t_m+t_a

t=\frac{d_m}{s_m} +\frac{d_a}{s_a}

First we must write the total travel time in terms of the motorboat's direction (Θ).

cos(\theta)=\frac{15}{d_m}

d_m=\frac{15}{cos(\theta)}=15 sec(\theta)

d_a=60-d_1

tan(\theta)=\frac{d_1}{15}

d_1=15tan(\theta)

d_a=60-15tan(\theta)

t=t_m+t_a

t=\frac{d_m}{s_m} +\frac{d_a}{s_a}

t=\frac{15sec(\theta)}{20} + \frac{60-15tan(\theta)}{90}

t=\frac{15}{20}sec(\theta) + \frac{60}{90}-\frac{15}{90}tan(\theta)

t=\frac{3}{4}sec(\theta)-\frac{1}{6}tan(\theta) + \frac{2}{3}

 

So this last equation represents the variation of the total travel time as a function of the motorboat's direction.

To find the equation's minimum point (which would be the direction with the minimum total travel time), we must find \frac{dt}{d\theta} and then find its roots (its x-interceptions).

\frac{dt}{d\theta}=\frac{d}{d\theta} (\frac{3}{4}sec(\theta)-\frac{1}{6}tan(\theta) + \frac{2}{3})

\frac{dt}{d\theta}=\frac{3}{4}sec(\theta)tan(\theta)-\frac{1}{6}sec^2(\theta)

\frac{dt}{d\theta}=sec(\theta)(\frac{3}{4}tan(\theta)-\frac{1}{6}sec(\theta))

Now let's find the values of x which make \frac{dt}{d\theta}=0

\frac{dt}{d\theta}=sec(\theta)(\frac{3}{4}tan(\theta)-\frac{1}{6}sec(\theta))=0

As sec(\theta) is never equal to zero, then \frac{dt}{d\theta} would be zero when

\frac{3}{4}tan(\theta)=\frac{1}{6}sec(\theta)

Graphing both equations we can find their interceptions and this would the value we're looking for.

In the attached images we can see that \theta=0.224 rad=12.83° is the minimum point for t(\theta). Then, to minimize the travel time from the yacht to the hospital, the motorboat should head in a direction of 12.83 degrees west of south.

You might be interested in
PLEASE ANSWER QUICKKK
valina [46]

Answer:

Because the rope is stopping the force of gravity from acceleration it.

PLZ MARK BRAINLIEST :-)

7 0
3 years ago
Stand next to a wall that travels at 30 km/s relative to the Sun. With your feet on the ground, you also travel at the same 30 k
mars1129 [50]

Answer:

Yes. Inertia keeps the speed maintained though my feet leave the ground.

Explanation:

Inertia is the resistance to the change in position of any object this means this resistance will keep me traveling at 30 km/s relative to the sun. If the person wants to change the position we apply force to do that because inertia is opposing us to not do that. We are always traveling with 30km/s relative to sun due to inertia.

8 0
3 years ago
A radio station's channel, such as 100.7 fm or 92.3 fm, is actually its frequency in megahertz (mhz), where 1mhz=106 hz and 1hz=
AURORKA [14]
The frequency of the radio station is
f=88.7 fm= 88.7 MHz = 88.7 \cdot 10^6 Hz

For radio waves (which are electromagnetic waves), the relationship between frequency f and wavelength \lambda is
\lambda= \frac{c}{f}
where c is the speed of light. Substituting the frequency of the radio station, we find the wavelength:
\lambda= \frac{3 \cdot 10^8 m/s}{88.7 \cdot 10^6 Hz}=3.38 m
6 0
4 years ago
Read 2 more answers
Motion is always compared to something called
HACTEHA [7]

Movement can be without change in positions. As only a part of it can be made to move. If you move there is a motion and if there is a motion there is a movement so they're same thing. In motion whole of body moves, but in movements only the parts of body moves.

7 0
3 years ago
child slides down a snow‑covered slope on a sled. At the top of the slope, her mother gives her a push to start her off with a s
Strike441 [17]

Answer:

θ = 13.7º

Explanation:

  • According to the work-energy theorem, the change in the kinetic energy of the combined mass of the child and the sled, is equal to the total work done on the object by external forces.
  • The external forces capable to do work on the combination of child +sled, are the friction force (opposing to the displacement), and the component of the weight parallel to the slide.
  • As this last work is just equal to the change in the gravitational potential energy (with opposite sign) , we can write the following equation:

       \Delta K + \Delta U = W_{nc} (1)

  • ΔK, is the change in kinetic energy, as follows:

       \Delta K = \frac{1}{2}* m* (v_{f} ^{2}  - v_{0} ^{2}) (2)

  • ΔU, is the change in the gravitational potential energy.
  • If we choose as our zero reference level, the bottom of the slope, the change in gravitational potential energy will be as follows:

        \Delta U = 0 - m*g*h = -m*g*d* sin\theta (3)

  • Finally, the work done for non-conservative forces, is the work done by the friction force, along the slope, as follows:

        W_{nc} = F_{f} * d * cos 180\º \\\\  = 0.2*m*g*d* cos 180\º = -0.2*m*g*d (4)

  • Replacing (2), (3), and (4) in (1), simplifying common terms, and rearranging, we have:

      \frac{1}{2}* (v_{f} ^{2}  - v_{0} ^{2}) = g*d* sin\theta -0.2*g*d

  • Replacing by the givens and the knowns, we can solve for sin θ, as follows:              \frac{1}{2}*( (4.30 m/s) ^{2}  - (0.75 m/s)^{2}) = 9.8 m/s2*25.5m* sin\theta -0.2*9.8m/s2*25.5m\\ \\ 8.56 (m/s)2 = 250(m/s)2* sin \theta -50 (m/s)2\\ \\ sin \theta = \frac{58.6 (m/s)2}{250 (m/s)2}  = 0.236⇒ θ = sin⁻¹ (0.236) = 13.7º
8 0
3 years ago
Other questions:
  • Are we actually touching nothing but electrons in reality or can we actually feel things without the electron barier?
    10·1 answer
  • An elastic loaded balloon launcher fires balloons at an angle of [38.0o above horizontal] from the surface of the ground. if the
    10·1 answer
  • At the nose of a missile in flight, the pressure and temperature are 5.6 atm and 850°R, respectively. Calculate the density and
    15·1 answer
  • If the Earth rotated more slowly about its axis, your apparent weight would
    6·1 answer
  • A railroad car of mass M moving at a speed v1 collides and couples with two coupled railroad cars, each of the same mass M and m
    15·1 answer
  • This time, William Tell is shooting at an apple that hangs on a tree (Fig. 3.32). The apple is a horizontal distance of 20.0 m
    7·1 answer
  • WILL GIVE 5 STARS!!!! HELP ASAP!!!
    14·1 answer
  • What part of a plant cell traps sunlight?_____________________
    14·2 answers
  • What is angular frequency​
    7·2 answers
  • Please help with this one
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!