Answer:
Explanation:
Cu²⁺ + 2e⁻ → Cu ( copper gets reduced )
Cu → Cu²⁺ + 2e⁻ ( copper gets oxidized )
Oxidation:
Oxidation involve the removal of electrons and oxidation state of atom of an element is increased.
Reduction:
Reduction involve the gain of electron and oxidation number is decreased.
Consider the following reactions.
4KI + 2CuCl₂ → 2CuI + I₂ + 4KCl
the oxidation state of copper is changed from +2 to +1 so copper get reduced.
CO + H₂O → CO₂ + H₂
the oxidation state of carbon is +2 on reactant side and on product side it becomes +4 so carbon get oxidized.
Na₂CO₃ + H₃PO₄ → Na₂HPO₄ + CO₂ + H₂O
The oxidation state of carbon on reactant side is +4. while on product side is also +4 so it neither oxidized nor reduced.
H₂S + 2NaOH → Na₂S + 2H₂O
The oxidation sate of sulfur is -2 on reactant side and in product side it is also -2 so it neither oxidized nor reduced.
Uranium emits particles and rays spontaneously through this process called radioactive decay or radioactivity.
Is the process by which the nucleus of an unstable atom loses energy by emitting radiation, including alpha particles, beta particles. gamma rays and conversion electrons.
Answer:
The interaction reaction of calcium oxide and water leads to the formation of calcium hydroxide, this reaction is exothermic, which indicates that energy is released.
CaO(s) + H2O ⇒ Ca(OH)2
Explanation:
Calcium oxide reacts violently with water, causing it to reach 90 C. It then forms calcium hydroxide, also called slaked lime. It is heated because it releases energy in the form of heat, because the new substance formed (slaked lime) has less internal energy than the original and this is released in the form of heat. As a general rule, acid and base solutions are exothermic.
The arctic climate most likely
Answer:
Mass percentage → 0.074 %
[F⁻] = 741 ppm
Explanation:
Aqueous solution of flouride → [F⁻] = 0.0390 M
It means that in 1L of solution, we have 0.0390 moles of F⁻
We need the mass of solution and the mass of 0.0390 moles of F⁻
Mass of solution can be determined by density:
1g/mL = Mass of solution / 1000 mL
Note: 1L = 1000mL
Mass of solution: 1000 g
Moles of F⁻ → 0.0390 moles . 19g /1 mol = 0.741 g
Mass percentage → (Mass of solute / Mass of solution) . 100
(0.741 g / 1000 g) . 100 = 0.074 %
Ppm = mass of solute . 10⁶ / mass of solution (mg/kg)
0.741 g . 1000 mg/1g = 741 mg
1000 g . 1 kg/1000 g = 1kg
741 mg/1kg = 741 ppm