Answer:
You can't ice skate on a liquid, when it is frozen it is a solid, when it's unfrozen it is a liquid
Answer:
4054 kcal of heat is released during complete combustion of 354 g of octane.
Explanation:
Heat of combustion of 1 mol of octane is
kcal
Molar mass of octane = 114.23 g/mol
We know, no. of moles = (mass)/(molar mass)
So,
kcal of heat is released during complete combustion of 114.23 g of octane.
So, amount of heat is released during complete combustion of 354 g of octane =
kcal = 4054 kcal
Hence 4054 kcal of heat is released during complete combustion of 354 g of octane.
Answer:
8.34
Explanation:
1) how much moles of NH₃ are in the reaction;
2) how much moles of H₂ are in the reaction;
3) the required mass of the H₂.
all the details are in the attachment; the answer is marked with red colour.
Note1: M(NH₃) - molar mass of the NH₃, constant; M(H₂) - the molar mass of the H₂, constant; ν(NH₃) - quantity of NH₃; ν(H₂) - quantity of H₂.
Note2: the suggested solution is not the shortest one.
Methylhexanamine<span> and its formula is C7H17N</span>
that thing is a drug
To determine the Ka of the acid, we can use the equation for the pH of weak acids which is expressed as:
pH = -0.5 log Ka
2.67 = -0.5 log Ka
Ka = 4.571x10^-6
Weak acids are acids that do not dissociate completely in solution. The solution would contain the cations, anions and the acid itself as a compound. Hope this helps.