Answer:
The resulting pressure is 3 times the initial pressure.
Explanation:
The equation of state for ideal gases is described below:
(1)
Where:
- Pressure.
- Volume.
- Molar quantity, in moles.
- Ideal gas constant.
- Temperature.
Given that ideal gas is compressed isothermally, this is, temperature remains constant, pressure is increased and volume is decreased, then we can simplify (1) into the following relationship:
(2)
If we know that
, then the resulting pressure of the system is:


The resulting pressure is 3 times the initial pressure.
Answer:
The distance traveled by the woman is 34.1m
Explanation:
Given
The initial height of the cliff
yo = 45m final, positition y = 0m bottom of the cliff
y = yo + ut -1/2gt²
u = 20.0m/s initial speed
g = 9.80m/s²
0 = 45.0 + 20×t –1/2×9.8×t²
0 = 45 +20t –4.9t²
Solving quadratically or by using a calculator,
t = 5.69s and –1.61s byt time cannot be negative so t = 5.69s
So this is the total time it takes for the ball to reach the ground from the height it was thrown.
The distance traveled by the woman is
s = vt
Given the speed of the woman v = 6.00m/s
Therefore
s = 6.00×5.69 = 34.14m
Approximately 34.1m to 3 significant figures.
It is itself. This question does not make sense.
Answer:
19 m/s
Explanation:
The complete question requires the final speed to be calculated.
Velocity is the rate and direction at which an object moves. Acceleration is the rate of change of velocity per unit time and can be calculated by the difference in velocity over a given time.
For this question, first the unknown acceleration must be calculated and used to determine the final velocity
Step 1: Calculate the acceleration




Step 2: Calculate the velocity using the acceleration calculated above


