• Take a look at the steps below to see how to balance this equation. Let's start by writing the unbalanced equation given the information.
Unbalanced Equation : C₃H₈ (g) + O₂ (g) → CO₂ (g) + H₂O (g)
,
Start by Balancing the Carbons : C₃H₈ (g) + O₂ (g) → 3CO₂ (g) + H₂O (g)
Now let's balance the Hydrogen : C₃H₈ (g) + O₂ (g) → 3CO₂ (g) + 4H₂O (g)
Balancing the Oxygen : C₃H₈ (g) + 5O₂ (g) → 3CO₂ (g) + 4H₂O (g)
Balanced Equation : C₃H₈ (g) + 5O₂ (g) → 3CO₂ (g) + 4H₂O (g)
• Let's apply dimensional analysis here,
0.7 L propane × (5 liters Oxygen / 1 liter Propane) = 3.5 Liters of Oxygen
• Similarly we can identify the liters of carbon dioxide produced in the reaction,
0.7 L propane × (3 liters Carbon Dioxide / 1 liter Propane) = 2.1 Liters of Carbon Dioxide
• 0.7 L propane × (4 liter water vapor / 1 liter propane ) = 2.8 Liters of Water Vapor
The chemical reaction that occurs is spontaneous. By the time the battery will recharge the cycle lead sulfate (sulfation) starts to reconvert into sulfuric acid and also with lead. Also, during the reviving procedure as power courses through the water part of the electrolyte and water, (H2O) is changed over into its unique components, hydrogen, and oxygen.
Answer:
107.8
Explanation:
64 gram of N2H4 produce 72 gram of H20
then by crossmultiplication
64*121.3/72=107.82
<span>The part of making a solution that always releases energy is the overall change in forming the solution. The answer is letter D. Although letters A, B and C can be viable answers but, it is not always the case. There are some substances that when you mix or separate them requires more energy or less energy. An example would be w</span>hen the formation (or enthalpy of formation) of carbon
dioxide is negative, it means that it releases heat to the surroundings. When
it releases heat to the surroundings, the reaction is exothermic. Another example is when you mix baking soda and muriatic acid, the resulting mixture is colder. When it is cold, it means that the reaction is endothermic. So the best answer is letter D.
Answer:
9.9652g of water
Explanation:
The establishment of the liquid-vapor equilibrium occurs when the vapour of water is equal to vapour pressurem 26.7 mmHg. Using gas law it is possible to know how many moles exert that pressure, thus:
n = PV / RT
Where P is pressure 26,7 mmHg (0.0351atm), V is volume (1.350L), R is gas constant (0.082 atmL/molK) and T is temperature (27°C + 273,15 = 300.15K)
Replacing:
n = 0.0351atm×1.350L / 0.082atmL/molK×300.15K
n = 1.93x10⁻³ moles of water are in gaseous phase. In grams:
1.93x10⁻³ moles × (18.01g / 1mol) = <u><em>0.0348g of water</em></u>
<u><em /></u>
As the initial mass of water was 10g, the mass of water that remains in liquid phase is:
10g - 0.0348g = <em>9.9652g of water</em>
<em />
I hope it helps!