Galileo Galilei was the first scientist to perform experiments in order to test his ideas. He was also the first astronomer to systematically observe the skies with a telescope.
:)
Answer:
Speed, v = 7.83 m/s
Explanation:
It is given that,
Length of the bridge, l = 5 m
The road on the far side is 2.0 m lower than the road on this side, x = 2 m
The horizontal distance covered by the car is 5 meters and the vertical distance covered by the car is 2 meters.
Initial speed of the car, u = 0
Let t is the time taken by the car . Using the second equation of motion as :
For vertical distance :


Let v is the velocity to jump the stream. It is given by :
Horizontal distance, d = 5 m

v = 7.83 m/s
So, the car should travel with a speed of 7.83 m/s. Hence, this is the required solution.
Both objects have the same electrical charge. Opposite charges attract. And if they were neutral they would not do anything.
Answer:
Option D
670 Kg.m/s
Explanation:
Initial momentum is given by mv=82*5.6=459.2 Kg.m/s (taking eastward as positive)
Final momentum is also mv but v being westward direction, we take it negative
Final momentum=82*-2.5= -205 Kg.m/s
Change in momentum=Final momentum-Initial momentum=-205-459.2=-664.2 Kg.m/s
Impulse=change in momentum=664.2 Kg.m/s rounded off as 670 Kg.m/s
Answer:
the most elliptical orbit is that of COMETA
Explanation:
The eccentricity of a curve in defined as the ratio between lacia to the focus, called c and the value of the axis greater than
ε = c / a
if we use Pythagoras' theorem
c = 
substituting
ε =
if ε = 0 we have a circumference
In the diagram presented the orbit of the comet is an ellipse a> b
ε=
if we expand in series
ε = 1 - x/2
ε=
if we neglect the non-linear terms
ε = 1
Earth's orbit is a small ellipse
b / a = 149 10⁶ / 151 10⁶
b / a = 0.98675
ε =
ε = 0.16
a very small ellipse
Planet X, despite not having data, it seems that the sun is in the scepter of the orbit, so b = a
therefore both the semi-axes of the curve
e = a / b
Consequently, the most elliptical orbit is that of COMETA.