Answer:

Explanation:
The formula for the heat released is
q = mCΔT
Data:
m = 395 g
C = 4.184 J·°C⁻¹g⁻¹
ΔT = 55 °C
Calculations:
q = 395 × 4.184 × 55 = 91 000 J = 91 kJ
The water will absorb
of energy.
Answer:
The dissociation of copper sulfate into ions is an exothermic chemical reaction that releases heat into the surroundings.
Explanation:
Some of the potential energy stored in the solid sample of anhydrous copper sulfate is released as heat as the sample dissolves and dissociates into ions in the water. This is due to the large lattice energy of the crystalline copper sulfate.
hope this helps
Potassium 23.5g/39.0983g/mol = 0.601mol
The Ratio of reactants is 2 to 1 so (0.601mol)/2 = 0.3005mol
Therefore 0.3005mol of F2 is needed to find liters use
formula V = nRT/P (V)Volume = 22.41L
(T)Temperature = 273K or 0.0 Celsius
(P)Pressure = 1.0atm
<span>(R)value is always .08206 with atm n = 0.3005moles
(273)(.08206)(0.3005)/1 = V V = 6.7319 Liters</span>
The empirical formula for this vitamin : C₃H₄O₃
<h3>Further explanation
</h3>
The empirical formula is the smallest comparison of atoms of compound =mole ratio of the components
The principle of determining empirical formula
- Determine the mass ratio of the constituent elements of the compound.
- Determine the mole ratio by dividing the percentage by the atomic mass
Mass of C in CO₂ :(MW C = 12 g/mol, CO₂=44 g/mol)

Mass of H in H₂O :(MW H = 1 g/mol, H₂O = 18 g/mol)

Mass O = Mass sample - (mass C + mass H) :

mol ratio C : H : O =

H3PO4 has molecular weight of approximately 98 grams per
mole. 4.50 M is equal to 4.50 mole per 1000 mL solution of H3PO4. 255 mL times
4.50 mol /1000 mL times 98 g/mol is equal to 112.455 grams. Note that I
automatically equate 1 Liter to 1000 mL since the given volume is in mL for
easier computation.