Molarity of a solution if 124.86 g of rbf are dissolved into a solution of water that has a final volume of 2.00L is 0.59.
<h3>What is molarity?</h3>
Molarity is used for dilute aqueous solutions held at a constant temperature. In general, the difference between molarity and molality for aqueous solutions near room temperature is very small and it won't really matter whether you use a molar or molal concentration.
MOLARITY = no of moles of solute/volume of soln in litres
No of moles of rbf = 124.6/104.46
= 1.19
Volume of soln = 2
Molarity=1.19/2 = 0.59
Learn more about Molarity here: brainly.com/question/26756988
#SPJ4
Answer: Temperature is an example of a quantitative variable
Explanation:
A quantitative variable is defined as :
- A variable that can assume a numerical value .
- It can be ordered with respect to either magnitude or dimensions.
- It is further classified into two types : interval scale and ratio scale.
Temperature comes under interval scale , because interval scale has no zero point.
For example : A 0° C Celsius does not interpret that there is no temperature.
Therefore , Temperature is an example of a quantitative variable.
Hence, the correct answer is "quantitative variable"
The chemical equation needs to be balanced so that it follows the law of conservation of mass.
Atomic number and the number of protons are the same...
Neutrons = Mass number - number of protons
Electrons are same # unless there is a charge
The whole number you see on the periodic table is the atomic number of the element which is also same as the number of protons
1) carbon - 14 ; Mass number = 14 , Protons = 6 , Neutrons = 14 - 6 = 8
Electrons = 6
2) Lead - 208 ; Mass # = 208 , Protons = 82 , Neutrons = 208 - 82 = 126
Electrons = 82
3) Uranium - 239 ; Mass # = 239 , Protons = 92,Neutrons = 239 - 92 = 147
Electrons = 92
4) Uranium - 238 ; Mass # = 238 , Protons = 92 , Neutrons = 238 - 92 = 146
Electrons = 92
5) Tin - 118 ; Mass # = 118 , Protons = 50 , Neutrons = 118 - 50 = 68
Electrons = 50