Answer:
С. form chains or rings by bonding to itself and other atoms.
Explanation:
Carbon is an element in group 4 of the periodic table with unique bonding properties. Carbon posseses 4 valence electrons in its outer shell. This enables carbon to form covalent bonds with the atoms of other elements e.g. nitrogen, phosphorus, oxygen, hydrogen etc.
Carbon can also combine covalently with other carbon atoms i.e. C-C to form long chains and rings in a process called CATENATION. This unique property of carbon makes it the only element that can form so many different compounds.
The specific heat capacity of this chunk of metal is equal to 0.32 J/g°C.
<u>Given the following data:</u>
- Quantity of energy = 400 Joules
- Initial temperature = 20°C
To determine the specific heat capacity of this chunk of metal:
<h3>
The formula for quantity of heat.</h3>
Mathematically, quantity of heat is given by the formula;

<u>Where:</u>
- Q represents the quantity of heat.
- m represents the mass of an object.
- c represents the specific heat capacity.
- ∅ represents the change in temperature.
Making c the subject of formula, we have:

Substituting the given parameters into the formula, we have;

Specific heat, c = 0.32 J/g°C.
Read more on specific heat here: brainly.com/question/2834175
Answer:
D
Explanation:
Solar panels are not toxic, so option A goes out the window.
Aesthetics don't really matter, so option B follows it out.
Option C makes a little sense, but less so than Option D. They aren't nearly as heavy as some of our current energy production methods.
Solar panels are expensive, hard to store properly, and most are between 15 and 20 percent efficiency, compared with a diesel motor's 40 percent.
Answer:
All the option are correct
Explanation:
The ocean currents have been associated with past climatic shifts during critical periods (for example, the ice ages), where modifications in water circulation might have caused important climatic changes.
From a biological point of view, the ocean currents may be associated not only with the climate but also biogeochemical cycles through modifications in the distribution of heat and freshwater. Thus, the changes in ocean circulation may produce biogeographical shifts by affecting the local climate. The importance of ocean currents in affecting biodiversity is also represented by the equilibrium of coral reef ecosystems, where this equilibrium is broken up by factors such as transport of pollutants, temperature conditions, etc., which are known to alter thermosensitive coral species.