Answer:- 0.800 moles of the gas were collected.
Solution:- Volume, temperature and pressure is given for the gas and asks to calculate the moles of the gas.
It is an ideal gas law based problem. Ideal gas law equation is used to solve this. The equation is:
PV=nRT
Since it asks to calculate the moles that is n, so let's rearrange this for n:

V = 19.4 L
T = 17 + 273 = 290 K
P = 746 mmHg
we need to convert the pressure from mmHg to atm and for this we divide by 760 since, 1 atm = 760 mmHg

P = 0.982 atm
R = 
Let's plug in the values in the equation to get the moles.

n = 0.800 moles
So, 0.800 moles of the gas were collected.
Impurities selection for doping in group 14 semiconductors is: based on their ability to add more holes and fewer electrons or to add more electrons and reduce the holes.
<h3>Meaning of Semiconductors</h3>
Semiconductors can be defined as any material that has the ability to exhibit some properties of a conductor and some properties of an insulator.
A semiconductor can be used as either a conductor or an insulator when worked upon.
In conclusion, Impurities selection for doping in group 14 semiconductors is: based on their ability to add more holes and fewer electrons or to add more electrons and reduce the holes.
Learn more about semiconductors: brainly.com/question/1918629
#SPJ1
Answer:
A , B, C
Explanation: D is a Diamagnetic
Answer:
C) H2S
Explanation:
In chemistry, the dissolution of one substance in another is dependent on the magnitude of intermolecular interaction between the two substances. Hence, if two substances do not interact in one way or the other, then one can not dissolve the other.
Let us consider the fact that NH3 is a polar molecule and it is a general principle that like dissolves like. Hence, only H2S which is also a polar molecule can effectively interact with NH3 due to dipole-dipole interaction between the two molecules.
Also, ammonia reacts with hydrogen sulphide as follows;
2NH3 + H2S → (NH4)2S
Hence H2S is more likely to dissolve in NH3.
They will become unequivalent