Answer:
It's true :) Hope that helps
Answer:
92.04%
Explanation:
Given:
Mass of CO₂ obtained = 53.0 grams
Mass of calcium carbonate heated = 1.31 grams
Now,
the molar mass of the calcium carbonate = 100.08 grams
The number of moles heated in the problem = Mass / Molar mass
= (1.31 grams) / (100.08 grams/moles)
= 0.013088 moles
now,
1 mol of calcium carbonate yields 1 mol of CO₂
thus,
0.013088 moles of calcium carbonate will yield = 0.013088 mol of CO₂
now,
Theoretical mass of 0.013088 moles of CO₂ will be
= Number of moles × Molar mass of CO₂
= 0.013088 × 44 = 0.5758 grams
Thus, the percent yield for this reaction = 
or
the percent yield for this reaction = 
or
the percent yield for this reaction = 92.04%
Answer:
Explanation:
<u>1) Rate law, at a given temperature:</u>
- Since all the data are obtained at the same temperature, the equilibrium constant is the same.
- Since only reactants A and B participate in the reaction, you assume that the form of the rate law is:
r = K [A]ᵃ [B]ᵇ
<u>2) Use the data from the table</u>
- Since the first and second set of data have the same concentration of the reactant A, you can use them to find the exponent b:
r₁ = (1.50)ᵃ (1.50)ᵇ = 2.50 × 10⁻¹ M/s
r₂ = (1.50)ᵃ (2.50)ᵇ = 2.50 × 10⁻¹ M/s
Divide r₂ by r₁: [ 2.50 / 1.50] ᵇ = 1 ⇒ b = 0
- Use the first and second set of data to find the exponent a:
r₁ = (1.50)ᵃ (1.50)ᵇ = 2.50 × 10⁻¹ M/s
r₃ = (3.00)ᵃ (1.50)ᵇ = 5.00 × 10⁻¹ M/s
Divide r₃ by r₂: [3.00 / 1.50]ᵃ = [5.00 / 2.50]
2ᵃ = 2 ⇒ a = 1
<u>3) Write the rate law</u>
This means, that the rate is independent of reactant B and is of first order respect reactant A.
<u>4) Use any set of data to find K</u>
With the first set of data
- r = K (1.50 M) = 2.50 × 10⁻¹ M/s ⇒ K = 0.250 M/s / 1.50 M = 0.167 s⁻¹
Result: the rate constant is K = 0.167 s⁻¹
Answer:
20.5torr
Explanation:
Given parameters:
V₁ = 15L
P₁ = 8.2 x 10⁴torr
V₂ = 6 x 10⁴L
Unknown:
P₂ = ?
Solution:
To solve this problem we have to apply the claims of Boyle's law.
Boyle's law is given mathematically as;
P₁ V₁ = P₂V₂
where P₁ is the initial pressure
V₁ is the initial volume
P₂ is final pressure
V₂ is final volume
8.2 x 10⁴ x 15 = P₂ x 6 x 10⁴
P₂ = 20.5torr