5.91(approx) seconds just divide velocity by acceleration
Answer:
Explanation:
Give that,
Spring constant (k)=40N/m
Force applied =75N
Since the force is applied to the right, we don't know if it is compressing or stretching the spring
So let assume it compress
Using hooke's law
F=-ke
e=-F/k
Then, e=-75/40
e=-1.875m
The deformation is 1.875m.
Let assume it stretch
Using hooke's law
-F=-ke
e=F/k
Then, e=75/40
e=1.875m
The elongation is 1.875m
Answer:
r = 0.02 m
Explanation:
from the question we have :
speed = 1 rps = 1x 60 = 60 rpm
coefficient of friction (μ) = 0.1
acceleration due to gravity (g) = 9.8 m/s^{2}
maximum distance without falling off (r) = ?
to get how far from the center of the disk the coin can be placed without having to slip off we equate the formula for the centrifugal force with the frictional force on the turntable force
mv^2 / r = m x g x μ
v^2 / r = g x μ .......equation 1
where
velocity (v) = angular speed (rads/seconds) x radius
angular speed (rads/seconds) = (\frac{2π}{60} ) x rpm
angular speed (rads/seconds) = (\frac{2 x π}{60} ) x 60 = 6.28 rads/ seconds
now
velocity = 6.28 x r = 6.28 r
now substituting the value of velocity into equation 1
v^2 / r = g x μ
(6.28r)^2 / r = 9.8 x 0.1
39.5 x r = 0.98
r = 0.02 m
We can use the kinematic equation

where Vf is what we are looking for
Vi is 0 since we start from rest
a is acceleration
and d is the distance
we get
(Vf)^2 = (0)^2 + 2*(2)*(500)
(Vf)^2 = 2000
Vf = about 44.721
or 44.7 m/s [if you are rounding this by significant figures]
Answer:
Length of the pipe = 53.125 cm
Explanation:
given data
harmonic frequency f1 = 800 Hz
harmonic frequency f2 = 1120 Hz
harmonic frequency f3 = 1440 Hz
solution
first we get here fundamental frequency that is express as
2F = f2 - f1 ...............1
put here value
2F = 1120 - 800
F = 160 Hz
and
Wavelength is express as
Wavelength = Speed ÷ Fundamental frequency ................2
here speed of waves in air = 340 m/s
so put here value
Wavelength =340 ÷ 160
Wavelength = 2.125 m
so
Length of the pipe will be
Length of the pipe = 0.25 × wavelength ......................3
put here value
Length of the pipe = 0.25 × 2.125
Length of the pipe = 0.53125 m
Length of the pipe = 53.125 cm