Answer:
A. The partial pressure for CH4 = 0.0925atm
B. The partial pressure for C2H6 = 0.925atm
C. The partial pressure for C3H8 = 0.346atm
D. The partial pressure for C4H10 = 0.115atm
Explanation:
Total pressure = 1.48atm
Total mole = 0.4+4+1.5+0.5=6.4
A. Mole fraction of CH4 = 0.4/6.4 = 0.0625
The partial pressure for CH4 = 0.0625 x 1.48 = 0.0925atm
B. Mole fraction of C2H6 = 4/6.4 = 0.625
The partial pressure for C2H6 = 0.625 x 1.48 = 0.925atm
C. Mole fraction of C3H8 = 1.5/6.4 = 0.234
The partial pressure for C3H8 = 0.234 x 1.48 = 0.346atm
D. Mole fraction of C4H10 = 0.5/6.4 = 0.078
The partial pressure for C4H10 = 0.078 x 1.48 = 0.115atm
So basically, the change in color effects the amount of cations in the solution making it a physical change rather than a chemical one, defying the law of conservation of mass! I hope this helped! (The only time the change in color affects the amount of cations is in the Alkaline Earth Metals)
source: college science teacher
A mole of any gas occupied 22.4 L at STP. So, the number of moles of nitrogen gas at STP in 846 L would be 846/22.4 = 37.8 moles of nitrogen gas.
Alternatively, you can go the long route and use the ideal gas law to solve for the number of moles of nitrogen given STP conditions (273 K and 1.00 atm). From PV = nRT, we can get n = PV/RT. Plugging in our values, and using 0.08206 L•atm/K•mol as our gas constant, R, we get n = (1.00)(846)/(0.08206)(273) = 37.8 moles, which confirms our answer.
To convert minutes to hours we divide the minutes by 60. So if we divide 3 by 60 we get 0.05 hours.
<h3>How to convert minutes into hour?</h3>
We know that in hour, there are 60 minutes so if we go from minutes to hours then we have to divide the number by 60 and when we go from hours to minutes we multiply with the same 60 number.
So we can conclude that to convert minutes to hours we divide the minutes by 60. So if we divide 3 by 60 we get 0.05 hours.
Learn more about hour here: brainly.com/question/291457
#SPJ1