1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
arlik [135]
3 years ago
10

If you reacted 183 grams of copper sulfate with excess iron, what mass of copper would you expect to make? You may need to balan

ce the equation first.
Chemistry
1 answer:
Nezavi [6.7K]3 years ago
7 0

The question does not provide the equation

Answer:-

72.89 grams

Explanation:-

The balanced chemical equation for this reaction is

CuSO4 + Fe --> FeSO4 + Cu

Molecular weight of CuSO4 = 63.55 x 1 + 32 x 1 + 16 x 4

= 159.55 gram

Atomic weight of Cu = 63.55 gram.

According to the balanced chemical equation

1 CuSO4 gives 1 Cu

∴159.55 gram of CuSO4 would give 63.55 gram of Cu.

183 gram of CuSO4 would give 63.55 x 183 / 159.55

= 72.89 grams of Cu

You might be interested in
How many half-lives are required for the concentration of reactant to decrease to 1.56% of its original value?4247.56.56
neonofarm [45]

Answer:

6 half-lives are required for the concentration of reactant to decrease to 1.56% of its original value.

Explanation:

Using integrated rate law for first order kinetics as:

[A_t]=[A_0]e^{-kt}

Where,

[A_t] is the concentration at time t

[A_0] is the initial concentration

Given:

Concentration is decreased to 1.56 % which means that 0.0156 of [A_0] is decomposed. So,

\frac {[A_t]}{[A_0]} = 0.0156

Thus,

\frac {[A_t]}{[A_0]}=e^{-k\times t}

0.0156=e^{-k\times t}

kt = 4.1604

The expression for the half life is:-

Half life = 15.0 hours

t_{1/2}=\frac {ln\ 2}{k}

Where, k is rate constant

So,  

k=\frac {ln\ 2}{t_{1/2}}

\frac{4.1604}{t}=\frac {ln\ 2}{t_{1/2}}

t = 6\times t_{1/2}

<u>6 half-lives are required for the concentration of reactant to decrease to 1.56% of its original value.</u>

6 0
3 years ago
enzyme‑catalyzed, single‑substrate reaction E + S − ⇀ ↽ − ES ⟶ E + P . The model can be more readily understood when comparing t
laila [671]

Complete Question

The complete question is shown on the first uploaded image

Answer:

[S]<<KM             |   [S]=KM                  |  [S]>>KM                     | Not true

____________  |   Half of the active  | Reaction rate is         | Increasing

[E_{free}] is about   |    sites are filled of  |    independent of      |  [E_{Total}] will                                            

 equal to [E_{total}]. |                                 |   [S]                             | lower KM

_____________________________________________|____________

[ES] is much       |                                 | Almost all active

 lower than         |                                 | sites are filled

[E_{free}]                  |                                 |

Explanation:

Generally the combined enzyme[ES] is mathematically represented as

                   [ES] = \frac{[E_{total}][S]}{K_M + [S]}----(1)

for Michaelis-Menten equation

Where [S] is the substrate concentration and K_M is the Michaelis constant

Considering the statement [S] < < K_M

  Looking at the equation [S] is denominator so it can be ignored(it is far too small compared to K_M)  hence the above equation becomes

               [ES] = \frac{[E_{total}][S]}{K_M}

Since [S] is less than K_M it means that \frac{[S]}{K_M}  < < 1

so it means that [ES] < < [E_{total}]

  What this means is that the  number of combined enzymes[ES] i.e the number of occupied site is very small compared to the the total sites [E_{total}]  i.e the total enzymes concentration which means that the free sites [E_{free}]  i.e the concentration of free enzymes is almost equal to [E_{total}]

Considering the second statement

      [S] = K_M

So  this means that equation one would now become

           [ES] = \frac{[E_{total}][S]}{2[S]} = \frac{[E_{total}]}{2}

So this means that half of the active sites that is the total enzyme concentration are filled with S

Considering the Third Statement

      [S] >>K_M

In this case the K_M in the denominator of equation 1 would be neglected and the equation becomes

       [ES] = \frac{[E_{total}] [S]}{[S]} = [E_{total}]

This means that almost all the sites are occupied with substrate

 The rate of this reaction is mathematically defined as

             v =\frac{V_{max}[S]}{K_M [S]}

Where v is the rate of the reaction(also know as the velocity of the reaction at a given time t) and V_{max}  is he maximum velocity of the reaction

In this case also the K_M at the denominator would be neglected as a result of the statement hence the equation becomes

                v = \frac{V_{max}[S]}{[S]} = V_{max}

So it means that the reaction does not depend on the concentration of substrate [S]

For the final statement(Not True ) it would match with condition that states that increasing [E_{total}] will lower K_M

This is because K_M does not depend on enzyme concentration it is a property of a enzyme

             

       

7 0
3 years ago
If you are 5 foot 10 inches, how tall are you in meters? Meters ( write you answer 4 significant figures e.g. 2.852)
horsena [70]
5 foot 10 inch = 1.55448 meter
3 0
3 years ago
In general, for a gas at a constant volume, _____.
densk [106]

It is kept constant

There is the answer if it helped

5 0
3 years ago
What is the volume of 40.0 grams of argon gas at STP ?
MrRa [10]

Answer:

24.9 L Ar

General Formulas and Concepts:

<u>Atomic Structure</u>

  • Reading a Periodic Table
  • Moles
  • STP (Standard Conditions for Temperature and Pressure) = 22.4 L per mole at 1 atm, 273 K

<u>Aqueous Solutions</u>

  • States of Matter

<u>Stoichiometry</u>

  • Using Dimensional Analysis

Explanation:

<u>Step 1: Define</u>

[Given] 40.0 g Ar

[Solve] L Ar

<u>Step 2: Identify Conversions</u>

[PT] Molar Mass of Ar - 39.95 g/mol

[STP] 22.4 L = 1 mol

<u>Step 3: Convert</u>

  1. [DA] Set up:                                                                                                       \displaystyle 40.0 \ g \ Ar(\frac{1 \ mol \ Ar}{39.95 \ g \ Ar})(\frac{22.4 \ L \ Ar}{1 \ mol \ Ar})
  2. [DA] Divide/Multiply [Cancel out units]:                                                         \displaystyle 24.9235 \ L \ Ar

<u>Step 4: Check</u>

<em>Follow sig fig rules and round. We are given 3 sig figs.</em>

24.9235 L Ar ≈ 24.9 L Ar

5 0
3 years ago
Other questions:
  • What is the minimum amount of energy a plant<br>must absorb to produce 15.0 g of glucose?​
    9·1 answer
  • A mixture of 0.220 moles co, 0.350 moles f2 and 0.640 moles he has a total pressure of 2.95 atm. what is the pressure of co?
    5·2 answers
  • Write the atomic symbol for the isotope of bismuth with 125 neutrons.
    5·1 answer
  • What elements are in h2o
    11·1 answer
  • Butane, ch3-ch2-ch2-ch3, is a hydrocarbon fuel used in lighters. how many moles of molecules are there in a 350. gram sample of
    8·1 answer
  • Name two human actions needed to slow climate change
    11·2 answers
  • Calculate the mass ratio of S to O in SO, and then calculate the mass ratio of S to O in SO2, given that the mass of S is approx
    11·1 answer
  • You are given a substance that is equally soluble in water and hexane, what is the kd
    12·1 answer
  • Pls help me answer this!
    6·1 answer
  • Name the following hydrate Pb(CIO3)4 . H2O
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!