The modulus of elasticity is 28.6 X 10³ ksi
<u>Explanation:</u>
Given -
Length, l = 5in
Force, P = 8000lb
Area, A = 0.7in²
δ = 0.002in
Modulus of elasticity, E = ?
We know,
Modulus of elasticity, E = σ / ε
Where,
σ is normal stress
ε is normal strain
Normal stress can be calculated as:
σ = P/A
Where,
P is the force applied
A is the area of cross-section
By plugging in the values, we get
σ = 
σ = 11.43ksi
To calculate the normal strain we use the formula,
ε = δ / L
By plugging in the values we get,
ε = 
ε = 0.0004 in/in
Therefore, modulus of elasticity would be:

Thus, modulus of elasticity is 28.6 X 10³ ksi
Answer:
a) C= 1/120
b) P(X>=5) = 0.333
Explanation:
The attached file contains the explanation for the answers
Answer:
yh and I said aaaaaaaaaaaa
Explanation:
Answer:
Given that the temperature of the window is below the dew point it will condensate.
Explanation:
A psychrometric chart (like the one attached) will give you the information needed. This chart is for 14.696 psia.
On the bottom horizontal axes you have the dry-bulb temperature, in this case 70°F, going up from this point you can reach the 50% relative humidity curve (red point on chart), going horizontally from this point to the 100% relative humidity you get the dew point temperature (the point at which moisture will condensate) (blue point on chart). In this case the dew point is 50°C. Given that the temperature of the window is below the dew point it will condensate.
Answer:
, 
Explanation:
The drag force is equal to:

Where
is the drag coefficient and
is the frontal area, respectively. The work loss due to drag forces is:

The reduction on amount of fuel is associated with the reduction in work loss:

Where
and
are the original and the reduced frontal areas, respectively.

The change is work loss in a year is:
![\Delta W = (0.3)\cdot \left(\frac{1}{2}\right)\cdot (1.20\,\frac{kg}{m^{3}})\cdot (27.778\,\frac{m}{s})^{2}\cdot [(1.85\,m)\cdot (1.75\,m) - (1.50\,m)\cdot (1.75\,m)]\cdot (25\times 10^{6}\,m)](https://tex.z-dn.net/?f=%5CDelta%20W%20%3D%20%280.3%29%5Ccdot%20%5Cleft%28%5Cfrac%7B1%7D%7B2%7D%5Cright%29%5Ccdot%20%281.20%5C%2C%5Cfrac%7Bkg%7D%7Bm%5E%7B3%7D%7D%29%5Ccdot%20%2827.778%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%29%5E%7B2%7D%5Ccdot%20%5B%281.85%5C%2Cm%29%5Ccdot%20%281.75%5C%2Cm%29%20-%20%281.50%5C%2Cm%29%5Ccdot%20%281.75%5C%2Cm%29%5D%5Ccdot%20%2825%5Ctimes%2010%5E%7B6%7D%5C%2Cm%29)


The change in chemical energy from gasoline is:



The changes in gasoline consumption is:





Lastly, the money saved is:

