The question is incomplete but still I answer to assume your thinking.
The picture is attached below!.
Here,
F is the force with which you pull up the incline.
N is the normal force.
w is the weight acting downward.
Axis are mentioned in the attached picture.
Concept:You can see there is no movement of object in the y-direction that means acceleration is zero in y-direction, sum of all the forces in y-direction equal to zero.
According to newton second law,
<span>∑ F = ma
</span>As, acceleration is zero in y-direction, so right hand side is zero in the above equation.
<span>∑ F = 0</span>
N-wcosθ=0
N= m*g*cos25°
N= m*(9.8)*(0.9063)
N= 8.8817*mBy putting the value of mass(m)(not given in the question) you will get the answer.
Hopefully, this is the answer of your question.
Answer:
a) The magnitude of the force is 968 N
b) For a constant speed of 30 m/s, the magnitude of the force is 1,037 N
Explanation:
<em>NOTE: The question b) will be changed in other to give a meaningful answer, because it is the same speed as the original (the gallons would be 1.9, as in the original).</em>
Information given:
d = 106 km = 106,000 m
v1 = 28 m/s
G = 1.9 gal
η = 0.3
Eff = 1.2 x 10^8 J/gal
a) We can express the energy used as the work done. This work has the following expression:

Then, we can derive the magnitude of the force as:

b) We will calculate the force for a speed of 30 m/s.
If the force is proportional to the speed, we have:

red goes to red, black goes to white, yellow goes to green, blue goes to blue.
Answer:

Explanation:
We can solve this problem by using Newton's second law of motion, which states that the net force acting on an object is equal to the product between its mass and its acceleration:

where
F is the net force on the object
m is its mass
a is its acceleration
In this problem:
F = 40 N is the force on the object
m = 2 kg is its mass
Therefore, the acceleration of the object is
