Rechargeable batteries use a reversible reaction medium to convert electrical current to a form of chemical energy which can be stored for future use.
<h3>
What is a rechargeable battery?</h3>
A rechargeable battery is a type of battery that can be charged many times by passing electric current through the cells in a reversible reaction.
<h3>How does recahargeable battery store energy?</h3>
When electrical energy from an outside source is applied to a secondary cell (reachargeable battery), the negative to positive electron flow that occurs during discharge is reversed, and the cell's charge is restored. This process is called reversible reaction.
Thus, rechargeable batteries use a reversible reaction medium to convert electrical current to a form of chemical energy which can be stored for future use.
Learn more about reversible reaction here: brainly.com/question/11412193
<u><em>Answer:</em></u>
- The correct structure of phosphoric acid is A.
<u><em>Explanation</em></u>
- P should form five covalent bonds. In this strcuture P form three single bond with 3-hydroxyl groups while one single bondformed with oxygen. As oxygen will form two bonds , it carry negative charge, while P should form five bond but here it is forming 4 bonds due to this P has positive charge but overall structure contain neutral charge due to cancellation of positive and negative charges. Beside this, there are 3 H, Four O and One P according to formula H3PO4.
Answer:
i assume that it would be a gametophyte.
Explanation:
Answer:
No. Two atoms of the same chemical element are typically not identical. Since the states of the electrons in an atom are what determine the nature of the chemical bonding that the atom experiences, two atoms of the same element can react differently if they are in different states.
Here we have to draw the major product in the acid catalysed hydration reaction of 4-ethyl-3,3-dimethyl-1-hexene.
The 4-ethyl-3,3-dimethyl-1-hexene converts to 2-hydroxy-4-ethyl-3,3-dimethyl-1-hexane as a major product by acid catalyzed hydration reaction.
The acid catalyzed hydration of an alkene is the Sn¹ reaction. Where in the first step a carbocation is generated. The stability of the carbocation depends upon the position of the neighboring group having +I inductive effect.
In the next step the water molecule attack the carbocation and the corresponding alcohol is produced.
In 4-ethyl-3,3-dimethyl-1-hexene the carbocation formed in the C₂ position which is more stable than the C₁ position due to presence of the dimethyl and ethyl group in the neighboring position which have strong +I inductive effect. This is absence in C₁ position.
In the next step the water molecule attack the C₂ position to form the alcohol.
4-ethyl-3,3-dimethyl-1-hexene converts to 2-hydroxy-4-ethyl-3,3-dimethyl-1-hexane by acid catalyzed hydration reaction which is the major product along with 1-hydroxy-4-ethyl-3,3-dimethyl-1-hexane as a minor product.
The reaction mechanism is shown in the image.