Solar cells are made out of silicon wafers. These are made out of the element silicon, a hard and brittle crystalline solid that is the second most abundant element in the Earth's crust after oxygen. If you're at the beach and see shiny black specks in the sand, that's silicon.
Hope this helps!
Please give brainliest!
Answer:
The value of the average convection coefficient is 20 W/Km².
Explanation:
Given that,
For first object,
Characteristic length = 0.5 m
Surface temperature = 400 K
Atmospheric temperature = 300 K
Velocity = 25 m/s
Air velocity = 5 m/s
Characteristic length of second object = 2.5 m
We have same shape and density of both objects so the reynold number will be same,
We need to calculate the value of the average convection coefficient
Using formula of reynold number for both objects



Here, 


Put the value into the formula


Hence, The value of the average convection coefficient is 20 W/Km².
The spring constant is 4 N/m
Explanation:
When a spring is stretched/compressed by the application of a force, the relationship between the magnitude of the force applied and the elongation of the spring is given by Hooke's law:

where
F is the magnitude of the spring applied
k is the spring constant
x is the elongation of the spring, relative to its equilibrium position
For the spring in this problem, we have:
F = 0.12 N (force applied)
x = 3 cm = 0.03 m (elongation of the spring)
Therefore, we can solve the formula for k to find the spring constant:

Learn more about forces:
brainly.com/question/8459017
brainly.com/question/11292757
brainly.com/question/12978926
#LearnwithBrainly
Answer:

Explanation:
For this problem, we need to apply the formulas of constant accelerated motion.
To obtain the boat displacement we need to calculate the displacement because of the river flow and the displacement done because of the boat motor.
for the river:

for the boat:

So the final displacement is given by:

Explanation:
Given
radius


mass disc 
mass of person 
velocity of Person 
moment of inertia 

Initial angular momentum



Final Moment inertia


final angular momentum

Conserving angular momentum


